

Scientific Journal of Impact Factor(SJIF): 3.134

e-ISSN(O): 2348-4470

International Journal of Advance Engineering and Research Development

Volume 2, Issue 5, May -2015

Study of Simple Load Flow Technique for Distribution System

Jignesh Patel¹, R. R. Patel², S. K. Rathor³

^{1,2,3}Department of Electrical Engineering, G.H. Patel College of Engineering & Technology, Vallabh Vidhyanagar

Abstract

In this paper a simple load flow technique for Distribution system is studied, which includes evaluation of simple algebraic equation for computing receiving end voltage and does not include trigonometric functions. This method is particularly very fast and efficient for distribution system with high R/X ratio, where conventional method are inefficient and time consuming. This method is successfully implemented on 34 & 69 Bus distribution system.

key words: Radial System; Load Flow; Distribution System

I. INTRODUCTION

Now days with modernization of society power demand is also increasing. This demand in distribution networks varies during whole day from highest demand at peck time to lowest demands during night time. To monitor demand change and load forecasting in distribution networks, it is essential to carry out load flow analysis on the system repeatedly. Load flow analysis basically provides operating condition of system at different loading level. Load flow are also important for planning of reactive VAR compensation and state estimation. It is essential in planning, optimization and stability studies. To fulfill this requirement an efficient and fast load flow method is required[1].

Traditional load flow techniques like Newton Raphson and Fast Decouple Load Flow are inefficient to solve distribution system case as, in distribution system R/X ratio is quite high compared to transmission network, for which traditional method are insufficient[2][3]. Also, This traditional method are iterative and compose of trigonometric functions, that means this load flow techniques require more time and memory for solving iterative steps.

In this paper, simple yet unique method is described for solution of Distribution load flow. This method involves solution of simple algebraic equation to compute receiving end voltage and no trigonometric terms involved for solution. This method guarantee convergence even with high R/X ratio as in practical cases.

II. METHODOLOGY

A simple two bus distribution system is shown in Figure 1. In this system 2 bus with generator being at bus 1 and load at bus 2 is considered.

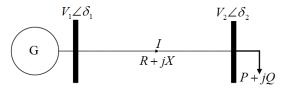


Figure 1. Simplest form of 2-Bus Network

From the above system we can write equation for current,

$$I = \frac{V_1 \angle \delta_1 - V_2 \angle \delta_2}{R + jX} \quad \dots (1)$$

and power being,

$$P - jQ = V_2^* I \dots (2)$$

From the above equations, we can write

$$\frac{V_1 \angle \delta_1 - V_2 \angle \delta_2}{R + jX} = \frac{P - jQ}{V_2^*} \quad \dots (3)$$

Further derivation of this equation will lead to,

$$V_{2} = \sqrt{\left(\sqrt{\left(PR + QX - 0.5V_{1}^{2}\right)^{2} - \left(R^{2} + X^{2}\right)\left(P^{2} + Q^{2}\right)}\right)} \dots(4)$$
$$\dots(4)$$

From equation (4), we can directly calculate the voltage at receiving end.

Similarly equation for calculating power angle is,

$$\delta_2 = \delta_1 - \tan^{-1} \left(\frac{PX + QR}{PR + QX + V_1^2} \right) \dots (5)$$

Now power loss in system can be calculated as,

$$P_L = I^2 R$$
$$Q_L = I^2 X \dots (7)$$

Current I in equation (7) is same as branch current, so

$$P_{L} = \left(\frac{P^{2} + Q^{2}}{V_{2}^{2}}\right)R \dots(8)$$
$$Q_{L} = \left(\frac{P^{2} + Q^{2}}{V_{2}^{2}}\right)X \dots(9)$$

These equation (4) through (9) can be extended to use in distribution system where the system beyond receiving end bus is considered to be lumped at receiving bus. That means whole distribution network is divided in 2 bus system. We can apply the equation (4), (5), (8) and (9) to calculate voltage and losses in particular section.

In such case we will calculate bus from starting bus where system is being feed toward the end node. Detailed algorithm for this system is given in [3] and [4].

III. DISTRIBUTION SYSTEM TEST CASE

Modified IEEE 34 Bus & 69 Bus radial distribution system are considered for study of this simple load flow technique. Details of this system can be found in [4][5].

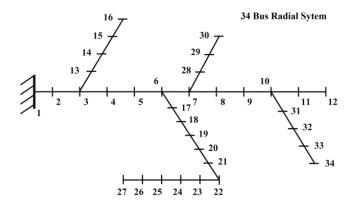


Figure 2. IEEE 34 Bus Radial system [3]

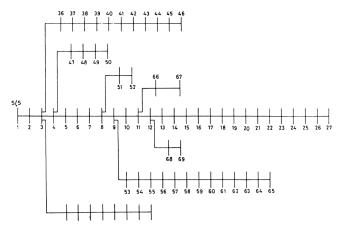


Figure 3. 69 Bus radial system

IV. RESULT AND ANALYS IS

After implementation of the proposed algorithm using the Simple Load Flow method on 34 Bus system, the result obtained are tabulated in Table 1. For comparison with conventional Newton Raphson method the system is also studied with NRLF and shown in Table 1.

	Voltage in p.u.		
Bus	Simple Load Flow	Newton Raphson Method	
1	1	1	
2	0.994345	0.9944	
3	0.989395	0.9895	
4	0.982625	0.9828	
5	0.976773	0.9771	
6	0.97123	0.9717	
7	0.967425	0.968	
8	0.965331	0.966	
9	0.962869	0.9636	
10	0.961685	0.9625	
11	0.961227	0.9621	
12	0.961091	0.9619	
13	0.989062	0.9891	
14	0.988756	0.9888	
15	0.988674	0.9888	
16	0.988614	0.9887	
17	0.960973	0.9619	
18	0.957302 0.9584		
19	0.953236	0.9545	
20	0.949958	0.9514	
21	0.947103	0.9487	

	Table 1. V	ltage at each Bus	in 34Bus system
--	------------	-------------------	-----------------

Γ	22	0.943836	0.9456
	23	0.941145	0.9431
	24	0.938612	0.9407
Γ	25	0.937392	0.9395
	26	0.936923	0.9391
	27	0.936783	0.939
	28	0.967089	0.9677
	29	0.966866	0.9675
	30	0.966754	0.9674
Γ	31	0.961344	0.9622
	32	0.961004	0.9618
	33	0.960834	0.9617
	34	0.960777	0.9616

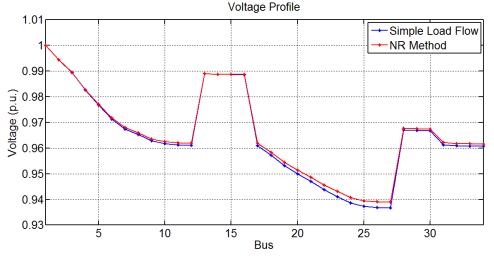


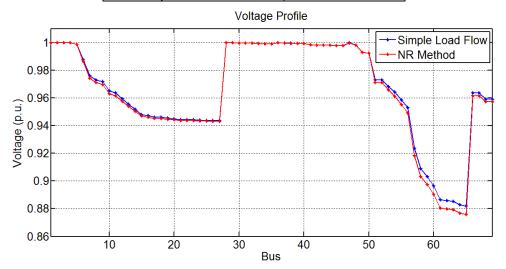
Figure 4. Voltage Profile Comparison for 34 Bus system

Table 2. Active and	Reactive Power	r Losses in 34Bus system
---------------------	----------------	--------------------------

	Active Power Loss	% Ploss	Reactive Power Loss	% Qloss
Simple Load Flow	213.41	4.60	95.28	3.31
NR method	201.25	4.34	88.93	3.09

Figure 4 shows the variation of voltage in p.u. at all the buses. The power losses are also calculated and presented in Table 2. It can be seen in Figure 4 that the studied Simple Load Flow method produce similar result in comparison with conventional complicated yet powerful NR method.

With the same Load Flow method 69 Bus distribution system is also studied and, the result obtained are tabulated in Table 3. Comparison of this simple load flow method with NR method is also tabulated in Table 3.



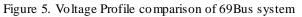

_

Table 3. Voltage at each Bus in 69Bus system			
	Voltage in p.u.		
Bus	Simple Load Flow	Newton Raphson Method	
1	1	1	

2	0.999958	1	
3	0.999915	0.9999	
4	0.999797	0.9998	
5	0.99878	0.9987	
6	0.987627	0.9866	
7	0.975886	0.9741	
8	0.97308	0.9711	
9	0.971647	0.9695	
10	0.965036	0.963	
10	0.963578	0.9616	
12	0.959386	0.9576	
13	0.955508	0.9539	
14	0.951648	0.9503	
15	0.94781	0.9468	
16	0.947097	0.9461	
17	0.945917	0.945	
18	0.945906	0.945	
19	0.945283	0.9445	
20	0.944883	0.9441	
21	0.944237	0.9436	
22	0.944228	0.9436	
23	0.944131	0.9438	
24	0.943921	0.9434	
25	0.943694	0.9432	
26	0.943601	0.9431	
27	0.943575	0.9431	
28	0.999906	0.9999	
29	0.999817	0.9998	
30	0.999689	0.9997	
31	0.999667	0.9997	
32	0.999554	0.9996	
33	0.999284	0.9993	
34	0.998981	0.999	
35	0.998892	0.9989	
36	0.999897	0.9999	
37	0.99967	0.9997	
38	0.99946	0.9994	
39	0.999399	0.9994	
40	0.999396	0.9994	
41	0.998472	0.9985	
42	0.998085	0.9981	

43	0.998034	0.998	
44	0.998022	0.998	
45	0.997892	0.9979	
46	0.997891	0.9979	
47	0.999731	0.9997	
48	0.998089	0.9981	
49	0.992988	0.993	
50	0.992264	0.9922	
51	0.973033	0.971	
52	0.97302	0.971	
53	0.968169	0.9657	
54	0.964105	0.9613	
55	0.95847	0.9552	
56	0.95294	0.9492	
57	0.923583	0.9183	
58	0.90889	0.9032	
59	0.903169	0.8973	
60	0.896401	0.8904	
61	0.88632	0.8803	
62	0.885926	0.8799	
63	0.885399	0.8793	
64	0.882805	0.8767	
65	0.882021	0.8759	
66	0.963502	0.9615	
67	0.963502	0.9615	
68	0.958945	0.9571	
69	0.958944	0.9571	
	•		

	Active Power Loss	% Ploss	Reactive Power Loss	% Qloss
Simple Load Flow	285.93	7.54	128.92	4.78
NR method	313.54	8.30	141.95	5.28

Table 4. Active & Reactive Power Losses in 69Bus system

Figure 5 shows comparison between Simple Load Flow technique implemented and Convention NR method. Active and Reactive power losses are tabulated in Table 4.

V. CONCLUSION

A Simple Load Flow is studied and validated by comparison with conventional Newton Raphson method. It is shown that the voltage magnitude and angle are similar to that of complicated Newton Raphson method. The method is very fast and accurate for solving distribution system load flow.

VI. REFERENCES

- [1] D Bhujel, B Adhikary, and A K Mishra, "A load flow algorithm for radial distribution system with distributed generation," in IEEE ICSET, Nepal, 2012.
- [2] G W Stagg and A H El-Abiad, Computer methods in power system analysis.: McGraw Hill, 1968.
- [3] D Das, D P Kothari, and A Kalam, "Simple and efficient method for load flow solution of radial distribution network," Electrical Power & Energy Systems, vol. 17, no. 5, pp. 335-346, 1995.
- [4] M Chakravorty and D Das, "Voltage stability analysis of radial distribution networks," Electrical Power and Energy Systems, vol. 23, no. 2, pp. 129-135, Feb 2001.
- [5] M. M. A. Salala and A. Y. Chihani, "A simplified network approach to the VAR control problem for radial distribution system," IEEE Transactions on Power Delivery, vol. 8, no. 3, pp. 1539-1535, July 1993.