High performance dual output CMOS Realization of the Third Generation Current Conveyor (CCIII)

Prachi Parikh¹, Gireeja Amin²

¹PG Student, Gujarat Technology University, Electronics and Communication, LCIT-Bhandu, Mehsana, Gujarat, India prachiparikh1989@gmail.com ²Assistant Professor. Electronics and Communication, LCIT-Bhandu, Mehsana, Gujarat, India, gireeja.amin@lcit.org

Abstract— In this paper a new CMOS high performance dual-output realization of the third generation current conveyor (CCIII) is presented. The presented CCIII provides good linearity, high output impedance at port Z and excellent input/output current gain. SPICE simulation results using TSMC 0.18µm and Generic 0.09µm CMOS process parameters in Mentor Graphics are given.

Keywords— CMOS Circuits, CCIII, SPICE

I. INTRODUCTION

Current conveyors and unity-gain amplifiers are widely used by analog designers especially in applications of signal processing and active network synthesis. In 1995, third generation current conveyor (CCIII) was introduced as a new active element for conveniently taking out the current flowing through a branch of a circuit [8].

The main features of the CCIII are low gain errors (high accuracy), high linearity and wide frequency response. In addition high output resistance at terminal Z of the CCIII is required to enable easy cascadability without need for additional active elements in applications. Unfortunately, because of the limited linearity and low output resistance of the basic current mirrors used in the structure of the conventional CCIII [8], its DC and AC performances are low.

In this paper, we introduced a new implementation of dual-output CCIII based on three unity gain cells. The circuit exhibits excellent output-input gain accuracy and frequency responses. Simulation results, which confirm the high performance of the new CCIII, are given.

II. CIRCUIT DISCRIPTION

The port relations of an ideal dual-output CCIII, which is shown in Figure 1, can be given by.

$$\begin{bmatrix} I_{\gamma} \\ V_{\chi} \\ I_{Z+} \\ I_{Z-} \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} V_{\gamma} \\ I_{\chi} \\ V_{Z+} \\ V_{Z-} \end{bmatrix}$$
(1)

where the positive and negative signs define a positive and negative current-controlled conveyor, respectively.

.

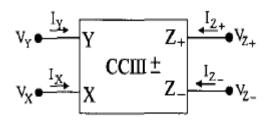


Figure 1 Symbol of the CCIII.

The conventional third generation current conveyor is shown in Figure 2. It is based on basic current mirrors $(M_6, M8)$, $(M_5.M_7)$, $(M_{14}, M16)$ and $(M_{13}, M15)$. The currents in ports X and Y is transferred to the ports Z+ and Z by the output stage transistors M_{21} - M_{22} and M_{23} - M_{24} respectively. A major advantage of this CCIII is its simple structure. The Z+ output resistance of this current conveyor is calculated as

$$\mathbf{R}_{oz+} = (\mathbf{r}_{ds21}) / (\mathbf{r}_{ds22})$$
 (2)

Where r_{dsi} denotes the output resistance of the i'th transistor respectively. The Z- output resistance of the conveyor can be calculated similarly. An important drawback of the conventional CCIII is the finite output resistance (R_{oz}).

Figure 3 is shown a DOCCIII by combining the VF-C with simple CMs, where PMOS and NMOS Current mirrors are formed by M9/M11 and M10/M12. First PMOS and NMOS current followers are formed by M9/M13/M15/M17 and M10/M14/M16 M18. Finally second PMOS and NMOS Current followers are formed by M9/M13/M15/M17 and M10/M14/M16 M18.

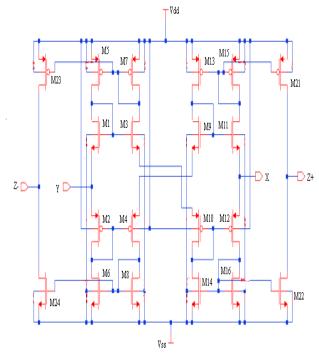


Figure 2 Schematic of Conventional third generation current conveyor (CCIII)

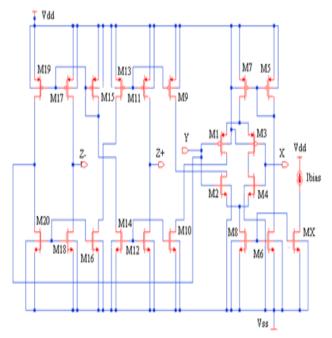


Figure 3 Schematic of DOCCIII by combining VF-C with simple CMs

III. SIMULATION RESULTS AND COMPARISON

Simulation Results for TSMC 0.18µm CMOS Technology

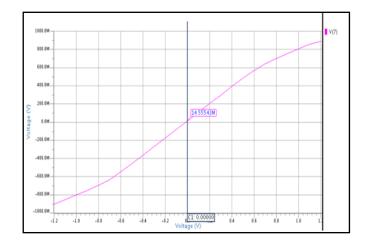


Figure 4 DC voltage characteristics at port X.

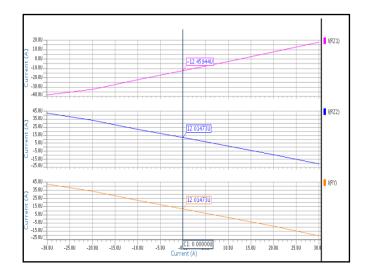


Figure 5 DC current characteristics at port Z+.

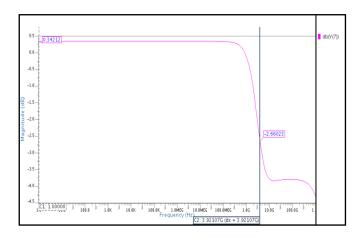
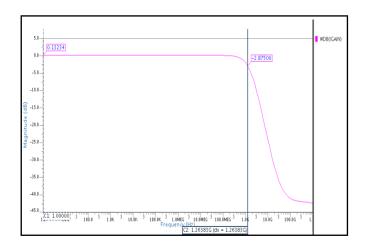



Figure 6 Frequency response of voltage gain at port X

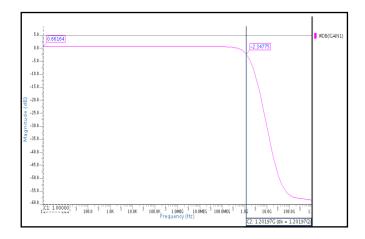


Figure 7 Frequency response of current gain and Bandwidth at ports Z+ and Z-.

Simulation Results for Generic 0.09µm CMOS Technology

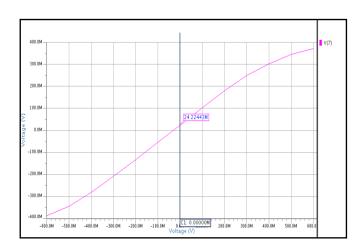


Figure 8 DC voltage characteristics at port X.

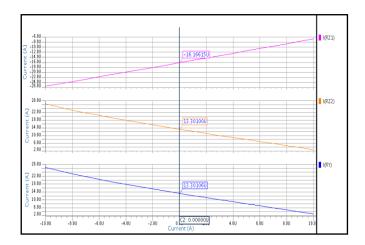


Figure 9 DC current characteristics at port Z+.

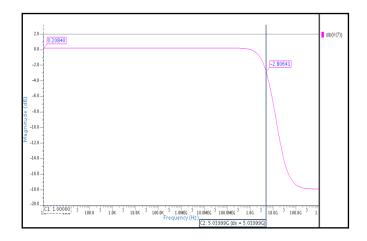


Figure 10 Frequency response of voltage gain at port X

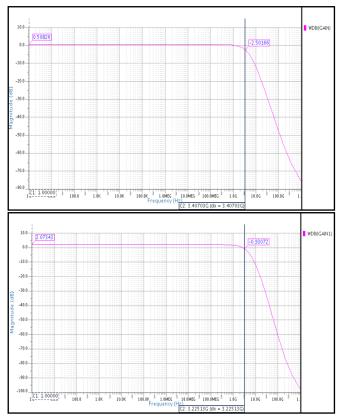


Figure 11 Frequency response of current gain and Bandwidth at ports Z+ and Z-.

IV: COMPARATIVE RESULTS

Table 1 Comparison of Characteristics for all CCIIIs described above in 180nm and 90nm CMOS technology

Current Conveyor Characteristics Simulated Value						
Characteristics	Third Generation Current Conveyors					
	Conventional CCIII	DOCCIII	Conventional CCIII	DOCCIII		
	0.18µm		0.09μm			
Supply Voltage	±1.2V	±1.2V	±0.6V	±0.6V		

Power Dissipation	0.09mW	0.49mW	0.065mW	0.22mW
3dB Current Bandwidth	158M H _z	1.26GH _z	1.6GH _z	3.40GH _z
3dB Voltage Bandwidth	169M H _z	3.92GH _z	1.34GH _z	5.04GH _z
Biasing Current I _{bias}	-	30μΑ	-	10μΑ
Offset	4mV	14.55mV	2.94mV	24mV
Current Gain(β)	1.07	1.07	1.2	1.14
Voltage Gain(α)	1.06	1.04	1.2	1.02
Node x Parasitic Impedance	360	4.16ΚΩ	674Ω	5.6ΚΩ
Node Y Parasitic Impedance	1.38ΚΩ	3.60ΚΩ	1.52ΚΩ	3.08ΚΩ
Node z Parasitic Impedance	1.01ΜΩ	94ΚΩ	18.16 ΚΩ	16.92ΚΩ

From the table 1, it can be seen that DOCCIII has higher value of output offset voltage and power dissipation but it can gives us higher speed than the conventional CCIII.

V: CONCLUSION

New high Speed CMOS third-generation current conveyor is presented. The presented circuit uses three unity gain cells namely Current mirror, Current follower and Voltage follower which increases the voltage and current bandwidths. The simulation results confirm high speed and performance of the circuits in terms of linearity, voltage and current gain accuracy.

REFERENCES

- 1. H. Hakan Kuntman," New Advances and Possibilities Provided By Alternative Active Elements In Analogue Circuit Design", IEEE Proc.,pp.1-9 ,2012
- 2. Chun-Chieh Chen, Kai-Yao Lin, Nan-Ku Lu, "Low Voltage, High Performance First and Third Generation Current Conveyor in 0.18μm CMOS", IEEE Proc.,pp.1491-1501,2008
- 3. E.Tlelo-Cuautle, D.Moro-Frias, M.Fakhfakh, Enis-Tunisia, "Systematic design of CCI(II)(III)s by combining UGCs", 3rd International Design and Test Workshop, 2008.
- 4. ShahramMinaei,Merih YildizSait ,Turko z Hakan, Kuntman,"High Swing CMOS Realization For Third Generation Current Conveyor (CCIII)", Journal Of Electrical & Electronics Engineering,2003
- 5. S. Minaei ,M Yildiz , H Kuntman. S. Tiirkoz, "High Performance CMOS Realization of The Third Generation Current Conveyor (CCIII)" IEEE, 2002
- 6. S. S. Rajput' And S. S. Jamua, "Low Voltage High Performance Current Conveyors and Their Applications as Current Sensors", IEEE Proc.,vol.1 pp.343-346,2002
- 7. A. Graupner, R. Schüffny, "The Switched Translinear Principle And Its Application", 7th International Conference on Mixed Design of Integrated Circuits and Systems MIXDES'2000 pages 109-112, 15-17 June, 2000,
- 8. A. Fabre, "Third- generation current conveyor: a new helpful active element", Electronics Letters vol: 31, Issue: 5, Mar 1995
- 9. A. piovaccari, "CMOS integrated Third- generation current conveyor" Electronics Letters vol:31, pp.1228-1229,1995
- 10. B. Wilson, "Recent developments in current conveyors and current-mode circuits", Circuits, Devices and Systems, IEEE Proceedings G Vol:137, Issue: 2, Apr 1990