
 International Journal of Advance Engineering and Research
Development

Volume 3, Issue 2, February -2016

@IJAERD-2016, All rights Reserved 266

Scientific Journal of Impact Factor (SJIF): 4.14
e-ISSN (O): 2348-4470
p-ISSN (P): 2348-6406

Docker Management Using Libvirt API

Amit Chahar
1
, Ajay Shekhawat

2
, Ankit Mishra

3
, Komal Kumari

4
, Prof. P.R. Sonawane

5

1,2,3,4,5
Department of Computer Engineering, Army Institute of Technology, Pune, India

Abstract—Docker automates the deployment of applications inside software containers by providing an additional

layer of abstraction. Docker implements a high-level API to provide lightweight containers that run processes in

isolation. It uses resource isolation features of the Linux kernel such as cgroups and kernel namespaces to allow

independent containers to run within a single Linux instance, avoiding the overhead of starting and maintaining virtual

machines.

Libvirt is used by the most clouds to give user access to the cloud and has bindings in other languages also like java,

python, ruby. It support LXC (linux containers) but does not support docker containers. Initially docker used LXC as

driver but because of it being managed by open source community, docker could not rely on it. So, docker developed its

own driver libcontainer in go language.

Docker is todays emerging technology but clouds can support docker only by using their own apis specially designed

for docker since libvirt does not support libcontainer. This increases the complexity of the cloud. Proposed solution is to

implement docker api in c and integrate it with the libvirt api. Thus, clouds will have to give access to only libvirt without

using any special api for docker. On the other hand, the docker interface will be generic for all clouds, thus user does not

have to face the difficulty while migrating from one cloud to another.

Keywords— libvirt; linux containers; docker containers; libcontainer; cloud computing

I. INTRODUCTION

Most commercial cloud computing systems, both services and cloud operating system software products use

hypervisors. Enterprise VMware installations, which can rightly be called early private clouds, use the ESXi Hypervisor.

Some public clouds (Terremark, Savvis, and Bluelock, for example) use ESXi as well. Both Rackspace and Amazon Web

Services (AWS) use the XEN Hypervisor, which gained tremendous popularity because of its early open source inclusion

with Linux. Because Linux has now shifted to support KVM, another open source alternative, KVM has found its way into

more recently constructed clouds (such as ATT, HP, Comcast, and Orange). KVM is also a favorite hypervisor of the

OpenStack project and is used in most OpenStack distributions (such as RedHat, Cloudscaling, Piston, and Nebula).

Microsoft uses its Hyper-V hypervisor underneath both Microsoft Azure and Microsoft Private Cloud.

However, not all well-known public clouds use hypervisors. For example, Google, IBM/Softlayer, and Joyent are all

examples of extremely successful public cloud platforms using containers, not VMs. Docker is an open-source project that

automates the deployment of applications inside software containers, by providing an additional layer of abstraction and

automation of operating-systemlevel virtualization on Linux. Docker uses resource isolation features of the Linux kernel

such as cgroups and kernel namespaces to allow independent containers to run within a single Linux instance, avoiding the

overhead of starting and maintaining virtual machines. Docker implements a high-level API to provide lightweight

containers that run processes in isolation. Building on top of facilities provided by the Linux kernel (primarily cgroups and

namespaces), a Docker container, unlike a virtual machine, does not require or include a separate operating system.

Instead, it relies on the kernels functionality and uses resource isolation (CPU, memory, block I/O, network, etc.) and

separate namespaces to isolate the applications view of the operating system. Docker accesses the Linux kernels

virtualization features either directly using the libcontainer library, which is available since Docker 0.9, or indirectly via

libvirt, LXC (Linux Containers) or systemd-nspawn.

The libvirt project develops a virtualization abstraction layer, which is able to manage a set of virtual machines across

different hypervisors. The goals of libvirt are to provide a library that offers all necessary operations for hypervisor

management without implementing functionalities, which are tailored to a specific virtualization solutions and which

might not be of general interest. Additionally, the long-term stability of the libvirt API helps these management solutions

to be isolated from changes of hypervisor APIs.

Most of the clouds use libvirt api for hypervisor management as libvirt gives a common interface to the user for all

hypervisors. Since docker has stopped supporting LXC drivers because LXC drivers are maintained by open source

community and therefore docker developers had to made frequent changes to the implementation. Libvirt only supports

LXC drivers, therefore it is difficult to use docker on clouds. Also some clouds have separate apis for docker management.

Therefore having separate apis of docker and libvirt are inconvient to both the cloud service provider and the user.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 3, Issue 2, February -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 267

Contributions of this paper: Today, there is still no support by libvirt api, which is able to manage docker containers.

Administrators are either restricted to use docker separately on the cloud or they have to develop their own proprietary

management suites for docker containers. This project offers an API that is able to manage docker containers over a stable

interface. This paper presents the first implementation that integrates the docker containers into the libvirt library. Besides

presenting the architecture of our integration, we discuss issues discovered during the implementation as well as

limitations of API mapping in the context of virtualization management.

II. RELATED WORK

Some trace inspiration for containers back to the Unix chroot command, which was introduced as part of Unix version

7 in 1979. In 1998, an extended version of chroot was implemented in FreeBSD and called jail. In 2004, the capability was

improved and released with Solaris 10 as zones. By Solaris 11, a full-blown capability based on zones was completed and

called containers[1]. By that time, other proprietary Unix vendors offered similar capabilities for example, HP-UX

containers and IBM AIX workload partitions. VMs as the clouds core virtualization construct have been improved

successively by addressing scheduling, packaging, and resource access (security) problems. VM instances acting as guests

use large, isolated files on their hosts to store their entire file system and typically run a single, large process on the

host[2][3]. Although security concerns are usually addressed through isolation, several limitations remain. Full guest OS

images are required for each VM in addition to the binaries and libraries necessary for the applications. Full images create

a space concern that translates into RAM and disk storage requirements and is slow on startup (booting might take from 1

to more than 10 minutes)[4].

As an example of OS virtualization advances, new Linux distributions provide kernel mechanisms such as namespaces

and control groups to isolate processes on a shared OS, supported through the Linux Container (LXC) project. Namespace

isolation allows groups of processes to be separated, preventing them from seeing resources in other groups. Container

technologies use different namespaces for process isolation, network interfaces, access to interprocess communication, and

mount points, and for isolating kernel and version identifiers.Control groups manage and limit resource access for process

groups through limit enforcement, accounting, and isolation for example, by limiting the memory available to a specific

container. This ensures that containers are good multitenant citizens on a host[5]. It also provides better isolation between

possibly large numbers of isolated applications on a host. Control groups allow containers to share available hardware

resources and, if required, the control groups can set up limits and constraints[6][7].

Figure 1 compares application deployment using a hypervisor and a container. As the figure shows, the hypervisor-based

deployment is ideal when applications on the same cloud require different operating systems or OS versions (for example,

RHEL Linux, Debian Linux, Ubuntu Linux, Windows 2000, Windows 2008, Windows 2012). The abstraction must be at

the VM level to provide this capability of running different OS versions. With containers, applications share an OS (and,

where appropriate, binaries and libraries), and as a result these deployments will be significantly smaller in size than

hypervisor deployments, making it possible to store hundreds of containers on a physical host (versus a strictly limited

number of VMs). Because containers use the host OS, restarting a container doesnt mean restarting or rebooting the

OS[1][4].

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 3, Issue 2, February -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 268

Fig. 1. Comparison of (a) hypervisor and (b) container-based deployments. A hypervisor-based deployment is ideal when

applications on the same cloud require different operating systems or different OS versions; in containerbased systems,

applications share an operating system, so these deployments can be significantly smaller in size.

III. DOCKER CONTAINERS

Docker is an open source project providing a systematic way to automate the faster deployment of Linux applications

inside portable containers. Basically, Docker extends LXC with a kernel-and application-level API that together run

processes in isolation: CPU, memory, I/O, network, and so on[8]. Docker also uses namespaces to completely isolate an

applications view of the underlying operating environment, including process trees, network, user IDs, and file systems.

Docker containers are created using base images. A Docker image can include just the OS fundamentals, or it can consist

of a sophisticated prebuilt application stack ready for launch. When building images with Docker, each action taken (that

is, command executed, such as apt-get install) forms a new layer on top of the previous one. Commands can be executed

manually or automatically using Dockerfiles.

Each Dockerfile is a script composed of various commands (instructions) and arguments listed successively to

automatically perform actions on a base image to create (or form) a new image. Theyre used to organize deployment

artifacts and simplify the deployment process from start to finish. Containers can run on VMs too. If a cloud has the right

native container runtime (such as some of the clouds mentioned) a container can run directly on the VM. If the cloud only

supports hypervisor-based VMs, theres no problemthe entire application, container, and OS stack can be placed on a VM

and run just like any other application to the OS stack[7][4]. In a traditional Linux boot, the kernel first mounts the root file

system as read-only, then checks its integrity before switching the rootfs volume to read-write mode. Docker mounts the

rootfs as read-only as in a traditional boot, but instead of changing the file system to read-write mode, it uses a union

mount to add a writable file system on top of the read-only file system. There might be multiple read-only file systems

stacked on top of each other. Using union mount, several file systems can be mounted on top of each other, which allows

for creating new images by building on top of base images. Each of these file system layers is a separate image loaded by

the container engine for execution. Only the top layer is writable. This is the container itself, which can have state and is

executable. It can be thought of as a directory that contains everything needed for execution[5][6]. Containers can be made

into stateless images (and reused in more complex builds), however.

IV. LIBVIRT API

The libvirt library is a Linux API over the virtualization capabilities of Linux that supports a variety of hypervisors,

including Xen and KVM, as well as QEMU and some virtualization products for other operating systems. This article

explores libvirt, its use, and its architecture.When it comes to scale-out computing (such as cloud computing), libvirt may

be one of the most important libraries youve never heard of. Libvirt provides a hypervisor-agnostic API to securely

manage guest operating systems running on a host. Libvirt isn’t a tool per se but an API to build tools to manage guest

operating systems. Libvirt itself is built on the idea of abstraction. It provides a common API for common functionality

that the supported hypervisors implement. Libvirt was originally designed as a management API for Xen, but it has since

been extended to support a number of hypervisors. Libvirt exists as a set of APIs designed to be used by a management

application. Libvirt, through a hypervisor-specific mechanism, communicates with each available hypervisor to perform

the API requests[9][10].

With libvirt, you have two distinct means of control. The first is demonstrated in figure 2, where the management

application and domains exist on the same node. In this case, the management application works through libvirt to control

the local domains. The other means of control exist when the management application and the domains are on separate

nodes. In this case, remote communication is required. This mode uses a special daemon called libvirtd that runs on remote

nodes. This daemon is started automatically when libvirt is installed on a new node and can automatically determine the

local hypervisors and set up drivers for them. The management application communicates through the local libvirt to the

remote libvirtd through a custom protocol. For QEMU, the protocol ends at the QEMU monitor. QEMU includes a

monitor console that allows you to inspect a running guest operating system as well as control various aspects of the

virtual machine (VM).

To support extensibility over a wide variety of hypervisors, libvirt implements a driver-based architecture, which allows a

common API to service a large number of underlying hypervisors in a common fashion[3]. This means that certain

specialized functionality of some hypervisors is not visible through the API. Additionally, some hypervisors may not

implement all API functions, which are then defined as unsupported within the specific driver. Figure 2 illustrates the

layering of the libvirt API and associated drivers. Note also here that libvirtd provides the means to access local domains

from remote applications.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 3, Issue 2, February -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 269

Fig. 2. Comparison and use model of libvirt

V. LIBVIRT EXTENSION FOR DOCKER

The scope of the libvirt API is intended to extend to all functions necessary for deployment and management of virtual

machines. This entails management of both the core hypervisor functions and host resources that are required by virtual

machines, such as networking, storage and PCI/USB devices. Most of the APIs exposed by libvirt have a pluggable

internal backend, allowing support for different underlying virtualization technologies and operating systems. Thus, the

extent of the functionality available from an particular API is determined by the specific hypervisor driver in use and the

capabilities of the underlying virtualization technology.

A. Hypervisor Connections

A connection is the primary or top level object in the libvirt API. An instance of this object is required before

attempting to use almost any of the APIs. A connection is associated with a particular hypervisor, which may be running

locally on the same machine as the libvirt client application, or on a remote machine over the network. In all cases, the

connection is represented with the virConnectPtr object and identified by a URI. The URI scheme and path defines the

hypervisor to connect to, while the host part of the URI determines where it is located.

B. Guest Domains

A guest domain can refer to either a running virtual machine or a configuration that can be used to launch a virtual

machine. The connection object provides APIs to enumerate the guest domains, create new guest domains and manage

existing domains. A guest domain is represented with the virDomainPtr object and has a number of unique identifiers.

Unique identifiers :

• ID: positive integer, unique amongst running guest domains on a single host. An inactive domain does not have an

ID.

• name: short string, unique amongst all guest domains on a single host, both running and inactive.

Fig. 3. Fig. 3. Connecting modules in docker and libvirt API. Commands are given to the libvirt daemon by the user.

Libvirt daemon calls main modules. Main modules calls auth. modules or command modules according to the

commands passed.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 3, Issue 2, February -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 270

 UUID: 16 unsigned bytes, guaranteed to be unique amongst all guest domains on any host. RFC 4122 defines

the format for UUIDs and provides a recommended algorithm for generating UUIDs with guaranteed

uniqueness.

A guest domain may be transient or persistent. A transient guest domain can only be managed while it is running on the

host. Once it is powered off, all trace of it will disappear. A persistent guest domain has its configuration maintained in a

data store on the host by the hypervisor, in an implementation defined format. Thus when a persistent guest is powered off,

it is still possible to manage its inactive configuration. A transient guest can be turned into a persistent guest while it is

running by defining a configuration for it[9].

C. Integrating Docker API with Libvirt

The main modules docker driver.h and docker driver.c are implemented according to the specification given by the

libvirt development guide. These modules contain the connection objects with the main api. docker driver.h contains the

driver number which is used in the libvirt api to call the docker api. It is included in libvirt.c file to run the driver as

daemon. In the configuration file of the libvirt, support for the docker package is added. docker driver.c is added to the

make file for the compilation and the whole libvirt api is compiled again using make to integrate the docker api.

D. Module Development

The main modules are docker driver.h and docker driver.c. These are used to call the other modules according to the

commands passed by the user. Modules docker login.c and docker logout.c authenticate the user with the docker engine.

There can be two step authorization: one in libvirt and second after entering in the docker engine. This increases the

security of the docker containers. Also, same credentials for both libvirt and docker engine can be used for ease. All the

commands of the docker are implemented in the command modules. These modules contain all the commands and their

options which can be passed from command line. Command moudules are called by the main modules according to the

command passed by the user. Docker Remote API is used to execute the commands on the docker engine.

E. Platform Used

Platform used for the development of the extended libvirt api is ubuntu, linux distribution. Ubuntu supports both

docker and libvirt API. Libvirt API works better on ubuntu as compared to the other linux distributions, since it was

originally developed on ubuntu and tools used for the development of the libvirt api are already present in the basic

installation whereas this can’t be the case for other linux distributions. Docker API is developed in C language since

original Libvirt API was also developed in C language. Also, using C language make the execution faster but other

language binding are also present for the libvirt. Make tool of ubuntu is used for the compilation of the API.

VI. CONCLUSION AND FUTURE WORK

Docker container management is one of todays most important problems in data center management. Libvirt is the

most prominent solution of an abstraction layer, being used by a number of management solutions and offering a stable

interface to hypervisor and container management.

In this paper, Libvirt api is extended to support docker containers and libcontainer driver. The language used to

implement the api was C. After updating the libvirt apis on clouds, no separate api is needed in order to support

libcontainer driver and docker can be installed with libcontainer driver. Therefore, enhanced reliability and portability

across clouds. Future work includes development of the C language api in other languages and integrate it with the libvirt

api binding already present in that language. Also, this api can be extended to enable to run test suites for various

virtualization environments. A graphical user interface can also be developed to simplify user interaction with the api.

ACKNOWLEDGMENT

We would like to express our deep gratitude to our Guide,Prof. P.R. Sonawane, Faculty of the Department of Computer

Engineering, Army Institute of Technology and Mr. Mohsin Khazi, Calsoft Inc. for all the valuable guidance and

intellectual stimuli that he provided during the progress of this work.It was a privilege to work under his valuable

guidance and supervision.We are also grateful Prof. M.B. Lonare, Prof. Praveen Hore, Faculty of the Department of

Computer Engineering for helping us from start,Prof. Sunil Dhore, HOD of the Department of Computer Engineering

and other faculty members of Department of Computer Engineering for timely guidance and encouragement to complete

this work.

REFERENCES

[1] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,” Cloud Computing, IEEE, vol. 1, no. 3, pp.
81–84, Sept 2014.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 3, Issue 2, February -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 271

[2] M. Bolte, M. Sievers, G. Birkenheuer, O. Niehorster, and A. Brinkmann, “Non-intrusive virtualization management

using libvirt,” in Design, Automation Test in Europe Conference Exhibition (DATE), 2010, March 2010, pp. 574–

579.

[3] V. Danciu, N. Felde, M. Kasch, and M. Metzker, “Bottom-up harmonisation of management attributes describing

hypervisors and virtual machines,” in Systems and Virtualization Management (SVM), 2011 5th International

DMTF Academic Alliance Workshop on, Oct 2011, pp. 1–10.

[4] A. Joy, “Performance comparison between linux containers and virtual machines,” in Computer Engineering and
Applications (ICACEA), 2015 International Conference on Advances in, March 2015, pp. 342–346.

[5] C. Pahl, “Containerization and the paas cloud,” Cloud Computing, IEEE, vol. 2, no. 3, pp. 24–31, May 2015.

[6] L. Li, T. Tang, and W. Chou, “A rest service framework for fine-grained resource management in container-based

cloud,” in Cloud Computing (CLOUD), 2015 IEEE 8th International Conference on, June 2015, pp. 645–652.

[7] T. Adufu, J. Choi, and Y. Kim, “Is container-based technology a winner for high performance scientific

applications?” in Network Operations and Management Symposium (APNOMS), 2015 17th Asia-Pacific, Aug 2015,

pp. 507–510.

[8] “Docker documentation,” https://docs.docker.com/.

[9] “libvirt api documentation,” https://libvirt.org/docs.html.

[10] “libvirt github repository,” https://github.com/libvirt/libvirt.

[11] “Docker github repository,” https://github.com/docker/docker.

[12] D. Liu and L. Zhao, “The research and implementation of cloud computing platform based on docker,” in Wavelet

Active Media Technology and Information Processing (ICCWAMTIP), 2014 11th International Computer

Conference on, Dec 2014, pp. 475–478.

[13] L. Affetti, G. Bresciani, and S. Guinea, “adock: A cloud infrastructure experimentation environment based on open

stack and docker,” in Cloud Computing (CLOUD), 2015 IEEE 8th International Conference on, June 2015, pp. 203–

210.

[14] R. Zhang, M. Li, and D. Hildebrand, “Finding the big data sweet spot: Towards automatically recommending

configurations for hadoop clusters on docker containers,” in Cloud Engineering (IC2E), 2015 IEEE International

Conference on, March 2015, pp. 365–368.

