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Abstract —We introduce a method for model learning and control of non-linear dynamical systems from raw pixel 

images. It consists of a deep generative model, belonging to the family of variational autoencoders, that learns to 

generate image trajectories from a latent space in which the dynamics is constrained to be locally linear. Our model is 

derived directly from an optimal control formulation in latent space, supports long-term prediction of image sequences 

and exhibits strong performance on a variety of complex control problems.For capturing the information of non-linear 

object’s behavior, we need to use high-dimensional data. Processing the high-dimensional data is expensive and not 

feasible. So, in this model, first Auto-encoder is used for dimensionality reduction, and after prediction method 

(transition mapping) is used, and the imagereconstructed. We demonstrate that our model enables learning good 

predictive models of dynamical systems from pixel information only. 

Keywords-machine learning, autoencoder, neural networks, latent space,non-linear systems, prediction, dynamical 

systems. 

I. INTRODUCTION 

 

Dynamical systems are mathematical objects used to model physical phenomena whose state (or instantaneous 

description) changes over time. These models are used in financial and economic forecasting, environmental modeling, 

medical diagnosis, industrial equipment diagnosis, and a host of other applications. If we have two short movies of 

billiards balls rolling around on a table without friction, we could not tell which was recorded first. Hence this system is 

stationary. On the other hand, if there is friction, then we are in the non-stationary situation, because the balls will slow 

down as time progresses, and their speed gives us a way of deducing when the observation was made. 

A key challenge is system identification, i.e. finding a mathematical model ofthe dynamical system based on the 

information provided by measurements from the underlying system. In the context of state-space models this includes 

finding two functional relationships between (a) the states at different time steps (prediction/transition model) and (b) 

states and corresponding measurements (observation/ measurement model)[1]. 

Control of non-linear dynamical systems with continuous state and action spaces is one of the key problems in 

robotics and, in a broader context, in reinforcement learning for autonomous agents. A prominent class of algorithms that 

aim to solve this problem are model-based locally optimal (stochastic) control algorithms. When combined with receding 

horizon control , and machine learning methods for learning approximate system models, such algorithms are powerful 

tools for solving complicated control problems [3, 4, 5]; however, they either rely on a known system model or require 

the design of relatively low-dimensional state representations. For real autonomous agents to succeed, we ultimately need 

algorithms that are capable of controlling complex dynamical systems from raw sensory input (e.g. images) only. In this 

paper we tackle this difficult problem. 

  

II. NON-LINEAR DYNAMICAL SYSTEMS 

A dynamical system will be defined to be a system in which the present state (the values of all of the variables and 

all of their derivatives) is somehow dependent on previous states of the system. A deterministic system will be taken to 

be a system in which the present state is entirely dependent on previous states of the system. A linear system is a system 

in which all of the dependence of the current state on previous states can be expressed in terms of a linear combination. A 

linear stochastic system is a system in which all of the dependence of the current state on previous states can be 

expressed in terms of a linear combination and the residual unpredictable portions can be expressed as additive, 

independent, identically distributed, random variables[2]. 

A nonlinear system is a system in which the dependence of the current state onprevious states cannot be expressed 

entirely as a linear combination; even if some of the dependence can be captured in a linear combination of the previous 

states, something extra is required to capture all of the dependence. 

Simulations of nonlinear dynamical systems have shown that nonlinear time series can be entirely deterministic, that 

is generated without any random component, and yet exhibit behavior which appears to have an error variance when 

analyzed by linear statistical methods. This work will present a variety of techniques for the analysis of nonlinear time 

series which have the potential to be modeled as signal portions of time series that are often discarded as noise. Learning 

non-linear dynamical models from veryhigh-dimensional sensor data is even more challenging. First, finding (non-linear) 

functional relationships in very high dimensions is hard (un-identifiability, local optimal, over-fitting, etc.); second, the 

amount ofdata required to find a good function approximation is enormous. Fortunately, high-dimensional data often 
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possesses an intrinsic lower dimensionality. Wewill exploit this property for system identification by finding a low-

dimensional representation of high-dimensional data and learning predictive models in this low-dimensional space. 

In this paper, we combine feature learning and dynamical systems modeling to obtain good predictive models for 

high-dimensional time series. We use auto-encoder neural networks for automatically finding a compact low-dimensional 

representation of an image. In this low-dimensional featurespace, we use a neural network for modeling the non-linear 

system dynamics. 

An encoder g
-1

 maps an image Yt-1 at time step t-1 to a low-dimensional feature zt-1. In this feature space, a 

prediction model l maps the feature forward in time to zt. Subsequently, the decoder g canbe used to generate a predicted 

image yt at the next time step. This framework needs access to both the encoder g
-1

 and the decoder g, which motivates 

our use of the auto-encoder as dimensionality reduction technique. 

 

III. MODEL 

We consider a dynamical system where control inputsare denoted by u and observations are denotedby y. In the 

context of this paper, the observationsare pixel information from images. We assume thata low-dimensional latent 
variable z exists that compactlyrepresents the relevant properties of y. Sincewe consider dynamical systems, a low-

dimensional representationz of a (static) image y is insufficient tocapture important dynamic information, such as 

velocities.Therefore, we introduce an additional latentvariable x, the state. In our case, the state xt containsfeatures from 

multiple time steps (e.g., t-1 and t) tocapture velocity (or higher-order) information. Therefore,our transition model does 

not map features attime t -1 to 1 to time t, but thetransition function f maps states xt-1 (and controlsut-1) to states xt at time 

t. The full dynamical systemis given as the state-space model 

xt+1 = f(xt, ut; θ) + wt(θ) 

zt= h(xt; θ) + vt(θ) 

yt = g(zt; θ) + et(θ) 

where each measurement yt can be described by alow-dimensional feature representation zt . Thesefeatures are in turn 

modeled with a low-dimensionalstate-space model in, where the statext contains the full information about the state of 

thesystem at time instant t. Here wt(θ),vt(θ) and et(θ) are sequences of independent randomvariables and θ are the model 

parameters[1,6,7]. 

To identify parameters in dynamical systems, the prediction-error method has been applied extensively within 

the system identification community during the last five decades. It is based on minimizing the error between the 

sequence of measurements yt and the predictions ŷt|t-1(θ), usually the one-step ahead prediction. To achieve this, we need 

a predictor model that relates the prediction ŷt|t-1(θ) to all previous measurements, control inputs and the system 

parameters θ.In general, it is difficult to derive a predictor model based on the nonlinear state-space model, and a closed 

form expression for the prediction is only available in a few special cases. However, by approximating the optimal 

solution, a predictor model for the features zt can be stated in the form 

ẑt|t-1(θM) = l(Zt-1;θM) 

where Zt-1 = (z1 , u1 ,…, zt-1, ut-1) includes all pastfeatures and control inputs, l is a nonlinear functionand θM is the 

corresponding model parameters. 

 

IV. AUTOENCODERS 

 

An autoencoder neural network is an unsupervised learning algorithm that applies backpropagation, setting the 

target values to be equal to the inputs. I.e., it uses y (i) = x (i). The autoencoder tries to learn a function hW,b(x) ≈ x. In 

other words, it is trying to learn an approximation to the identity function, so as to output x’ that is similar to x. The 

identity function seems a particularly trivial function to be trying to learn; but by placing constraints on the network, such 

as by limiting the number of hidden units, we can discover interesting structure about the data. 

Architecturally, the simplest form of an autoencoder is a feedforward, non-recurrent neural net which is very 

similar to the multilayer perceptron (MLP), with an input layer, an output layer and one or more hidden layers connecting 

them. The differences between autoencoders and MLPs, though, are that in an autoencoder, the output layer has the same 

number of nodes as the input layer, and that, instead of being trained to predict the target value y given inputs x, 

autoencoders are trained to reconstruct their own inputs x. Therefore, autoencoders are unsupervised learning models. 

https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Unsupervised_learning
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Fig 1. The general representation of autoencoder. 

 

 

V. EXPERIMENTAL RESULTS 

Model training. We consider two different network types for our model: Standard fully connected neural networks with 

up to three layers, which work well for moderately sized images, are used for the planar and swing-up experiments; A 

deep convolutional network for the encoder in combination with an up-convolutional network as the decoder which, in 

accordance with recent findings from the literature [8, 9], we found to be an adequate model for larger images. Training 

was performed using Adam [14] throughout all experiments. The training data set D for all tasks was generated by 

randomly sampling N state observations and actions with corresponding successor states. For the plane we used N = 

2000 samples. 

 

Baseline models. For a thorough comparison and to exhibit the complicated nature of the tasks, we also test a set of 

baseline models on the plane: a standard variational autoencoder (VAE) and a deep autoencoder (AE) are trained on the 

autoencoding subtask for visual problems. That is, given a data set D used for training our model, we remove all actions 

from the tuples in D and disregard temporal context between images. After autoencoder training we learn a dynamics 

model in latent space. 

 

 
Fig 2. Left column are xt, xt+1, and right column are the reconstructed predictions. 

 

Control in planar system. The agent in the planar system can be moved in a two dimensional plane limited by the 

choice of a continuousdisplacement in x and y-direction. High-dimensional representation of a state is a 40 × 40black and 

white image. Obstructed by fourrectangular obstacles, the task is to move to the right bottomimage, from a random x 
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position at the top of the image. Encodings obstaclesare obtained before planning and an additional term of quadratic cost 

is penalizing proximity to them.[12,10] 

A representation of the observations on which control is performed - along with their correspondingstatus values and 

fouling latent space - is shown in Figure 2. While trained separatelyautoencoders make aesthetically pleasing images, 

models failed to discover the underlyingstructure of the state space, which complicates the estimation of the dynamic and 

largely based invalidate costsat distances in the space. Including unrealized dynamic constraints on these models in end 

to endOn the other hand, it produces latent spaces approach optimal embedding planar. 

 

VI. CONCLUSION AND FUTURE WORK 

We presented a system for stochastic optimal control on high-dimensional image streams. Key to the approach 

is the extraction of a latent dynamics model which is constrained to be locally linear in its state transitions. An evaluation 

on four challenging benchmarks revealed that it can find embeddings on which control can be performed with ease, 

reaching performance close to that achievable by optimal control on the real system model. Future work includes 

predicting long sequence of images in an infinite time-series data. 
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