

International Journal of Advance Engineering and Research Development

e-ISSN (O): 2348-4470

p-ISSN (P): 2348-6406

Volume 3, Issue 8, August -2016

DESIGN AND ANALYSIS OF STENTER PIN CHAIN

Prof. Sanket Patel

Department of Mechanical Engineering (MACHINE DESIGN), HGCE, Vahelal. er.sanket4u@gmail.com

Abstract — The stenter chain is used in stenter machine in textile industry. The core aim of the project is to redesign and to carried out Finite Element Analysis for stenter pin chain. The objective of present work to make simplest design and reducing the friction from the guide surface as much as possible and consequently decreasing the power required to drive the stenter machine and though enables the stenter chain to work on higher linear speed. Other objectives of this project are to make light and strong chain. On the basis of the comparison with existing design data's and finite elemental analysis, some well suited model was proposed for stenter chain. The existing design as well as proposed design of the stenter pin chain is made of mild steel.

Keywords- Stenter machine, Stenter pin Chain, FEA

I. INTRODUCTION

STENTER MACHINE:

Stenter is a machine for thermally treating a textile fabric. The fabric in open width condition is passed through the stenter. During the passage of the fabric through the stenter, hot air steam is directed onto the fabric from above and below by an assembly of blowers, radiators, nozzles etc. arranged above and below the fabric. The assemblies are known as chamber and are suitably insulated to ensure minimum loss of heat.

Fig.1.1 Stenter Machine

STENTER CHAIN:

The stenter chain glides through the cast iron rails which provide long service life, low coefficient of friction between sintered bronze chain bottoms and special grade cast machined and ground rails reduces lode on the main drive motor and gears. The choice of chain type depends on the process and fabric. The chain is available in alternatively type of pin only, clip only and pin clip combined.

The clips are made of several individual, pressures die-cast, easily replacement components. These components are made from special corrosion resistant aluminium alloy and are distortion proof even at high heat setting temperature. These components are very well designed to ensure long trouble free performance all kinds of fabric. The steel shoe holding the clips are tatted with sintered metal liners and connected with steel links. The roller chain glides smoothly on special cast iron rails. The superb sliding property of sintered metal is to considerably reduce lubrication requirements even at high heat setting temperatures, thus ensuring safe operation and long life.

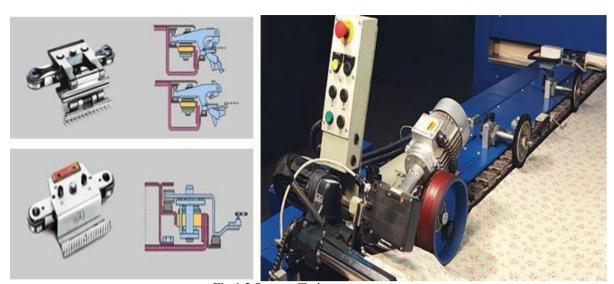


Fig.1.2 Stenter Chain

TYPES OF CHAIN

A. HORIZONTAL CHAIN

B. VERTICAL CHAIN

II. LITERATURE REVIEW ON STENTER CHAIN

(1) Stenter Clip, Apte, Vasant Vyanktesh, EPO219941AI, 1987.

A stenter pin having pin body which is made of pressed sheet metal. One end of the pin body is attached to a chain that moves the pin between the hot air nozzles of a textile while it is transported through the stenter. The other end of the clip gate is to hold the edge of the textile while it is transported through the stenter. Alternatively the edge of the textile may be retained by the pin bar which is also mounted at the front of the clip body. The center region of the clip body has V-shaped region and a pair of rolling bearing are mounted on rolling bearing move in guide channel rails xed inside the stenter to prevent the tilting of the stenter clip. The clip is made of pressed metal and so is cheaper than known clips by arranging the bearing at 45 degree to the horizontal. The height of the clip can be very small allowing the nozzle of the stenter to be positioned closer to the textile and hence allowing more efficient treatment of the textile.

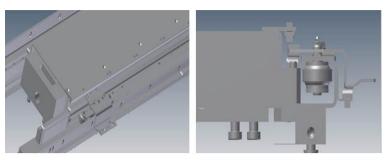
(2) Stenter Chain, C.G.Renold, US1478454, 1923.

The aim of the present work to make lighter chain, decreasing the power required, increasing the linear speed and make a strong chain. This design relatively light chains are made on general lines usual in driving chains, the inner links are joined in pairs by bushes are passed to connect the outer links in pairs. The links are formed with laterally projecting lugs bent out from the metal of the links and these lugs support rollers which either take up the lateral tension or take up the weight of the chain according to the plane in which the pivotal axes of the chain links are arranged to move. The laterally projecting lugs may also serve for securing the stenter clips or pinned plates. The chain itself is then provided with rollers either on the projecting ends of studs passing through the inner bushes or on projecting ends of solid studs connecting the outer links. These rollers are arranged to operate in guide tracks and when the chain is arranged for the pivotal axes of the links to move in a horizontal plane, these rollers take the weight of the chain and any canting stress may act in either direction owing to the pull of the fabric on the one hand and to the thrust on the other hand necessary to open the spring clip jaws when such are employed. When the chain is arranged with the pivotal axes vertical these latter rollers serve to bear the lateral stresses.

(3) Tenter Chain, H.A. Madenight, US2285820, 1942.

This design relates to improvement in stenter chain. The particular improvement disclosed resides in provision of means whereby the clips are maintained in desired alignment. The principle of these design to provide a form of connection for the roller links which will enable stenter clips to be associated there-with and still be maintained in substantial alignment so long as the clip are engaged with cloth being processed.

(4) Combind Clip & Pin Chain link for fabric stretching machines, P.Deck, US2446131, 1948.


This design relates to improvement in combined clip and pin Chain links for fabric stretching machine. Clip links as parts of a stenter chain are known which are adapted to grip the edges of textile materials. The movable part of the clip link is customarily provided with a knife edge for securely engaging the fabric. Pin strips are known as parts a stenter chain in which the edge of the fabric is engaged by the pins for stretching the fabric. When the clips are used for stretching, the pin strips are left unguarded and the fabric can easily come into unwanted contact with the pins of the pin strips when the fabric is introduced into the clips and even after the fabric has been inserted into the clip due to small initial tension. The fabric is damaged thereby or a bending of the pins occurs. When alternately the pin strip are used for stretching, the movable parts on the clip link, which for the purpose of its clamping operation is customarily provided with a considerable weight for loading, lies with its sharp knife edge on the clip plat by the movement of the chain links due to unavoidable vibrations and again falls back on to the same time. Because of this movement of the movable part of the clip links relative to the clip plate, the sharp knife edge of the movable part is worm.

(5) Pin Plate Attachment for clip tenter chain, E.C.Rust, US2822601, 1958.

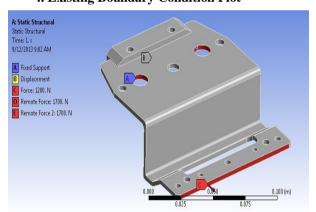
In this research paper, Researcher studied different methods are discussed for power loss reduction. No load losses can be reduced, especially at low temperatures and part load conditions when using low viscosity oils with a high viscosity index and low oil immersion depth of the components. This in turn influences the cooling properties in the gear and bearing meshes. All in all a reduction of the gearbox losses in average of 50 % is technically feasible. There is a comparison of the no load losses of different bearing Types for same load capacity C = 20 kN. Lowest no load losses of radial bearings are expected for cylindrical roller bearings. They also low values of taper roller bearings are valid for unloaded bearing arrangements. Dependent on the application and the operating regimes a power loss reduction potential in a gearbox of some 50% was proven to be possible. In some applications only the simple change to a highly efficient lubricant can save some 20% power loss.

III. DESIGN & ANALYSIS OF EXISTING STENTER PIN

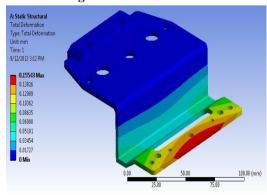
1. Track Chain Assembly

Track Chain Assembly

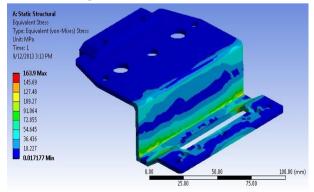
2. Stenter Pin Chain



3. Existing Meshed Model

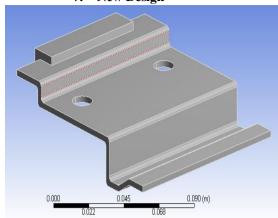

0.000 0.045 0.090 (m)

Stenter Pin Chain

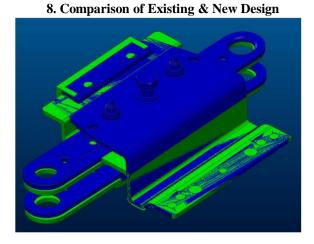

4. Existing Boundary Condition Plot

Existing Meshed Model
5. Existing Total Deformation Plot

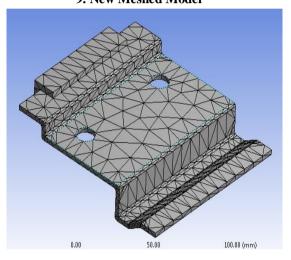
Existing Boundary Condition Plot 6. Existing Von-mises Stress Plot

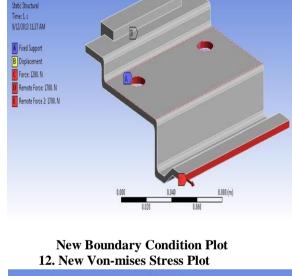


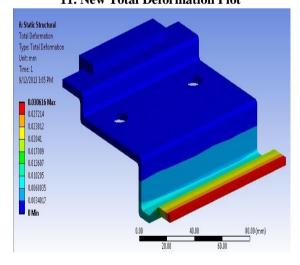
Existing Total Deformation Plot


Existing Von-mises Stress Plot

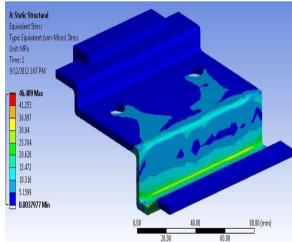
A: Static Structural


7. New Design


New Design 9. New Meshed Model

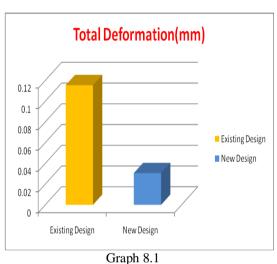


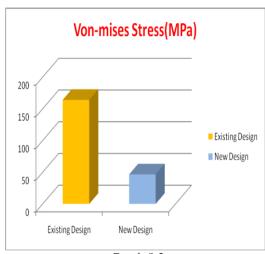
Comparison of Existing & New Design 10. New Boundary Condition Plot



New Meshed Model
11. New Total Deformation Plot

New Total Deformation Plot




New Von-mises Stress Plot

RESULTS

No.	Total Deformation(mm)	Von-mises Stress(mpa)	Factor of Safety
Existing Design	0.11543	163.9	1.5
New Design	0.03061	46.409	5.3

8. CONCLUSION

Graph 8.2

The static analysis is represented with the help of line graph. According to the above graph 8.1 plotted for existing design against Total Deformation of stenter pin chain signifies value 0.11543mm. Same graph for new modified data's against Total Deformation of stenter pin chain signifies value 0.03061mm. Graph 8.2 shows existing stress value 163.9 MPa and modified new design value 46.409 MPa. The above static enforces to implement new modified design for design prospect as well as economical prospect the graph concludes reduction of total deformation by 26.51% and Von-Mises stress by 28.31% and also improve the factor of safety 3.5 time than the existing conditions.

REFERENCES

- [1] Stenter Clip. Apte. Vasant Vvanktesh. EPO219941AI, 1987.
- [2] Stenter Chain, C.G.Renold, US1478454, 1923.
- [3] Tenter Chain , H.A. Madenight, US2285820, 1942
- [4] Combined Clip & Pin Chain link for fabric stretching machines, P.Deck, US2446131,1948
- [5] Pin Plate Attachment for clip tenter chain, E.C.Rust, US2822601, 1958