e-ISSN (0): 2348-4470

Scientific Journal of Impact Factor (SJIF): 4.14 p-ISSN (P): 2348-6406

International Journal of Advance Engineering and Research
Development

Volume 3, Issue 10, October -2016

LINUX DEVICE DRIVER DEVELOPMENT ON ARM CORTEX A9 BASED
EMBEDDED SYSTEM

Practical Approach
Kapil Kumar*, Shoukath Cherukat?

! Department of M.Tech. Electronics Design Technology, NIELIT, Calicut,
2 Department of Embedded Systems, NIELIT, Calicut.

Abstract — Linux Operating System (OS) has a kernel source which provides resources to hardware and
software. In order to access hardware resources, drivers for the particular hardware must be developed and get
registered with kernel of the particular OS. Device driver take on a special role in Linux kernel. They are distinct “black
boxes” that make a particular piece of hardware respond to a well-defined internal programming interface; they hide
completely the details of how the device works. User activities are performed by means of a set of standardized calls that
are independent of the specific driver; mapping those calls to device-specific operations that act on real hardware is then
the role of the device driver. Each driver gets registered with the kernel using major and minor number.

Linux Device Drivers are developed particularly for LCD, Touch screen, Camera, and NFC (PN512). All the
four drivers are using different interface in order to communicate with the processor. LCD is interfaced with MIPI,
Touch screen uses 12C, Camera driver communicate with the processor using CSI interface and NFC (PN512) is
interfaced with UART to the processor.

Keywords- Device Driver, Kernel, NFC, Camera, LCD, Touch screen

l. INTRODUCTION

Device drivers provide essential system functionalities by controlling all device-specific hardware operations.
Although device drivers play an important role, drivers are one of the most unreliable components in OS. Device drivers
are generally known to be unreliable because developing high-quality device drivers is difficult. There are several
reasons why. First, the driver developers have to understand both hardware and software. To properly operate the
hardware device, the developer has to be aware of all hardware registers to trigger valid operations. At the same time, the
developer has to understand software, specifically the underlying operating system, or kernel. Because kernel APIs have
many variants and complex implication in its behavior, it is generally difficult to write code. This paper focuses on
development methodology of device drivers particularly for LCD, Touch Screen, Camera, & NFC for i.MX 6 based
applications processors platform that ARM® Cortex® architecture, including Cortex-A9.

e B Necestaaav
Freescale
iMX6
Quad/oual |
Camera Video Decoder TN o b
Connector ADV7281

Fig. 1. Block Diagram of Hardware Connected with the Processor

@IJAERD-2016, All rights Reserved 97

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 10, October -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

1. HARDWARE SPECIFICATIONS OF DEVICE

Drivers have been developed exclusively for the Linux OS running on ARM CORTEX A9 based Board. To
implement the drivers, following hardware has been used. Specifications of the hardware can be found below.

A. LCD Display

LCD Display module is MTFO70ICN-PB1 which is 40-pin connector from Microtech Technology Co. Ltd.
Important Features of this display module is, that, it supports MIPI interface, resolution 800 x 3(RGB) X 1280, and
having 4-Data Lanes which supports bandwidth of around GHz order.

B. Touch screen
Touch Screen (Atmel maXTouch) is interfaced using 12C2 to the processor.

C. Camera

Camera module is OV5642 which is used for the purpose of video recording so that it can be stream on LCD
Display. This module gets connected to the Board using camera serial interface.

D. NFC PN512
NFC PN512 is connected to the processor using UART interface. The PN512 transmission module supports the
Read/Write mode for ISO/IEC 14443 A/MIFARE and ISO/IEC 14443 B using various transfer speeds and modulation
protocols. PN512 NFC frontend supports the following operating modes:
« Reader/Writer mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme
» Card Operation mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme
* NFCIP-1 mode The modes support different transfer speeds and modulation schemes.

1. HARDWARE SETUP OF DEVICE WITH i.MX6 PROCESSOR

DSI_CLKOM | DSI_CLKO_DN CSI_CLkoM —— cikn ANt 1 CC
DSI_CLKOP || DSI_CLK0_DP CSI_CLKOP —— cLkp
DSI_DOM || DSI_DO_DN CSI_DOM 1 poN
DSI_DOP | DSI_DO_DP CSI_DOP +— pop
DSI_DIM -1 DSI_D1 DN
DS|_D1P | DSI_D1_DP
i.MX 6 Processor MIPI LCD Display Video Decoder (Camera)

Fig. 2. Schematic Design - i.MX 6 Processor, LCD, Camera

GPIOS_i010 RST
GPIOS_iO11 ! INT

SCL —1 SsCL
SDA — SDA

DISPLAY DRIVER IC

Fig. 3. Schematic Design - i.MX 6 Processor & Capacitive Touch screen

@IJAERD-2016, All rights Reserved 98

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 10, October -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

GPI04_108 | NFC_UARTS_TXD RFD_UARTTX | 4

GPI04_109 | NFC_UARTS_RXD RFID_UARTRX | o7

iMX 6PROCESSOR NFCPN512
Fig.4 Schematic Design - i.MX 6 Processor & PN512

v. DRIVER DEVELOPMENT AND IMPLEMENATION
This Section details the driver development procedures followed for each driver separately.
A. LCD Display Driver

Linux LCD Device Driver is in the middle of user program and hardware.

User Space

,‘[

System Call Interface

|

Linux Kernel

LCD DEVICE DRIVER

LCD FRMEBUFFER

LCD CONTROLLER
DRIVER

1

LCD DISPLAY

Fig. 5. Display Driver Framework

The driver is responsible for pushing decoded raw data to display interface. Frame buffer driver drive display
interface as a block of memory, user program use simple memory control command to read/write data from display
device.

B. Touch screen
Capacitive touch has multi touch support and less prone to dust particle. Most capacitive touch controller has

capability to support multiple configuration (X & y axis). According to configuration set for the touch one has to
scale the inputs received from touch to the area of LCD.

@IJAERD-2016, All rights Reserved 99

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 10, October -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

USER INPUT 1

l ‘dewinputieventX

Kernezl IRQ Driver l
Drver Module IRQ
Handler
InputDevice Reader
un{
Driver Module Event
Proce ssor Function

l ClientApplication

Linux Inputlayer

EEE

Fig. 6.Capacitive Touch Event Flowchart

C. Camera

Camera subsystem initially provided a unified APl between host drivers and sensor drivers. Later camera sensor
API has been replaced with the V4L2 standard subdev API.

Video Capture Application

T

V4L2 Layer
'I KernellLayer

Application Layer

Camera Driver

T

Decoder Driver

Camera

Hardware Layer

Fig. 7.Camera Driver Framework

The camera host API to the soc-camera core has been preserved. Soc-camera implements a V4L2 interface to
the user, currently only the “mmap” method is supported by host drivers. However, the soc-camera core also
provides support for the “read” method. The subsystem has been designed so as to support multiple camera host
interfaces and multiple cameras per interface, although most applications have only one camera sensor.

D. NFC PN512

NFC subsystem is required to standardize the NFC device drivers development and to create an unified user
space interface.

The NFC subsystem is responsible for:
- NFC adapter’s management, polling for targets and low-level data exchange.

@IJAERD-2016, All rights Reserved 100

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 10, October -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

NFC Application

Interface Layer

UserSpace
Libnfc-nci core

Hardware Abstraction Layer

KernelSpace
PN512 Driver

NFC Controller Hardware

Fig. 8.NFC Driver Framework

The subsystem is divided into different parts. The 'core' is responsible for providing the device driver
interface. On the other side, it is also responsible for providing an interface to control operations and low-level data
exchange. The control operations are available to user space via generic netlink. The low-level data exchange interface is
provided by the new socket family PF_NFC. The NFC_SOCKPROTO_RAW performs raw communication with NFC
targets. When registering on the NFC subsystem, the device driver must inform the core of the set of supported NFC
protocols and the set of ops callbacks.

The ops callbacks implemented are

* start_poll - setup the device to poll for targets

* stop_poll - stop on progress polling operation

* activate_target - select and initialize one of the targets found

* deactivate_target - deselect and deinitialize the selected target

* data_exchange - send data and receive the response (transceive operation)

The userspace must use PF_NFC sockets to perform any data communication with targets. All NFC sockets use
AF_NFC:

To establish a connection with one target, the user must create anNFC_SOCKPROTO_RAW socket and call the 'connect’
syscall with the sockaddr_nfcstruct correctly filled. All information comes from
NFC_EVENT_TARGETS_FOUNDnetlink event. As a target can support more than one NFC protocol, the user must
inform which protocol it wants to use.

V. TESTING AND VALIDATION

For the testing of the drivers the code developed are integrated with the kernel and a number of modifications
are required in the kernel as detailed below.

A. Kernel changes for LCD

In /KERNEL/arch/arm/mach-mx6/board-mx6q_sabrelite.c
e Add Pin mux for LCD enable gpio, Dispay enable gpio ,lcd data lines.
e Add Driver file for LCD

Enable Driver in menu config

e Device Drivers-> Graphics support-> OMAP2+ Display Subsystem support-> OMAP2/3 Display Device
Drivers -> Lcd driver->y

B. Kernel Changes for Touch screen

@IJAERD-2016, All rights Reserved 101

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 10, October -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

Add pin mux for irqgpio,resetgpio in board file

Register 12C1 touchscreen with address of chip

Add code for touchscreeen

Enable driver in menuconfig - Device driver ->input driver support ->Touch screen ->Driver->y

For Touchscreen Calibration
e Add calibration points In /etc/X11/xorg.conf.d/99-calibration.conf file in files ystem .
e Section "InputClass"
e |dentifier "calibration"
e MatchProduct "Touchscreen name"

C. Kernel Changes for Camera

e 0bj-$(CONFIG_VIDEO OV5642) +=0V5642.0
e config VIDEO_OV5642
e ftristate “OV5642 CMOS IMAGE SENSOR”

D. Kernel Changes for NFC PN512

e In /KERNEL/arch/arm/mach-mx6/board-mx6q_sabrelite.c
Add UART support

{

/* UART */

{

.modalias = "uartdev",

.max_speed_hz = 48000000, //48 Mbps
.bus_num =2, //uart

.chip_select = 0,
.mode = UART_MODE_1,
}l

e Register uart bus

e InMenuconfig

Device Drivers ---> [*] UART support ---> (put * for) User mode UART device driver support

e Added Driver code for pn512 drivers/net/nfc

e Inmenuconfig Networking Support-> NFC Subsystem support-> Near Field Communication (NFC) Devices-
>M pn512 driver->y

OMAP2/3 Display Device Drivers
Arron keys navigate the menu, <Enter> selects submenus --->. Highlighted letters are
hotkeys. Pressing </> includes, <N> excludes, nodularizes features. Press <Esc<Ese> 0
exit, <> for Help, </> for Search. Legend: [*] built-in [] excluded <> module <>
module capable

*> Generic DPI Pane

<> [FP410 DPI-to-OVI chip

<> 16.Philips LB035Q02 LD Panel
< > Sharp LS037V70KO1 LCD Panel
<> NEC NLB04SHL11-01B Panel

< > [1 PICO DLP mini-projector
<> PO TDO43WTEA1 LCD Panel

selecoJRETEAI Help >
Fig. 9.LCD Driver Integration into Kernel

@IJAERD-2016, All rights Reserved 102

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 10, October -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

Fig. 10.LCD Display Flashing after detected by the driver

.config - Linux/xB86_64 3.0.35 Kernel Configuration

Touchscreens
Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <M> module < >

--- Touchscreens

< > ADS7846/TSC2046/AD7873 and AD(S)7843 based touchscreens
< > AD7877 based touchscreens

< > Analog Devices AD7879-1/AD7889-1 touchscreen interface
E*

< > BU21013 based touch panel controllers

cyBctmg110 touchscreen

Dynapro serial touchscreen

Hampshire serial touchscreen

EETI touchscreen panel support

A A A A

>
>
>
>

< Exit > < Help >

Fig. 11.Touch screen Driver Integration into Kernel

LR K L] TR

PIAR0Yhe st am et Mame LTI TECH () AR AL

Linux/arm 3.7.10 Kernel Configurd

Fig. 12.Camera Driver Integration into Kernel

root@salher-Lenovo-G50-80: /home/salher /Desktop/nfc-drivers/libnfc/linux_libnfc-n
ci# ./nfcDemoApp
Missing argument

(COMMAND :

poll Polling mode e.g. fcDemoApp poll >

write Write tag e.g. <nfcDemoApp write --type=Text -1 en -r "Te
st">

share Tag Emulation Mode e.g. <nfcDemoApp share -t URI -u http:/
|/ WwWW . NXP . CC

push Push to device e.g. <nfcDemoApp push -t URI -u http://www.nxp.

[com>

e.g. <nfcDemoApp p! -type=mime -m "applicati|
on/vnd.bluetooth.ep.oob” -d "2200AC597405AF1COE0947 17879204E6F74652033040D0)|
C024005031E110B11">

Help Options:
-h, --help Show help options

Fig. 13.Linux based Application for NFC Read/write purpose
@IJAERD-2016, All rights Reserved 103

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 10, October -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406
VI. CONCLUSION & FUTURE SCOPE

Device Drivers have been developed for LCD, Touch screen, Camera and NFC specifically for ARM CORTEX A9
based embedded system running Linux OS. All the drivers have been then added as a part of kernel so that whenever
such devices found, it will automatically get detected. Each of the four drivers have been first tested on development
board and later tested with custom board. There is always a scope of improvement in the driver coding.

So, as a part of future scope, driver developer can be modified the code as and when required because of
modification in the hardware input and output signals. And suppose, there is change in the kernel and a set of system
calls/API have been added to ease the operation of Linux OS, then also drivers can be optimized.

VII. REFERENCES

[1] Alessandro Rubini& Jonathan Corbet, Linux Device Drivers, 2nd edition , O’Reilly , pp 1-715-18, 22-23

[2] Richard Petersen , The complete Reference Linux, 6th edition , Mc-Graw Hill Osborne , chapter 1-2

[3] Karim Yaghmour, Jon Masters, et.al, Building Embedded Linux Systems , 2nd edition,O’Reilly, chapter 1-6

[4] Jia-Ju Bai, Hu-Qiu Liu, Yu-Ping Wang, Shi-Min Hu, “Complete Runtime Tracing for Device Drivers Based on
LLVM” , 39th IEEE Annual International Computers, Software & Application Conference 2015

[5] SeehwanYoo, Young-pil Kim, “Test-driven Development of Consumer Electronics Device Drivers: A User-level
Device Driver Approach”, IEEE International Conference on Consumer Electronics ,2015

[6] Chao Ma, Peng Zhao, Shi-min Hu, “Serial Driver: Improving the Reliability of Device Drivers through
Serialization”, IEEE Transactions on Consumer Electronics, Vol. 58, No. 3, August 2012

[7] Yu-Jung Huang, Chih-Feng Liu,, Shao-Pin Chang, et.al “Design of LCD Driver IP for SOC Applications”, 2004
IEEE Asia-Pacific Conference on Advanced System Integrated Circuits(AP-ASIC2004)/Aug. 4-5, 2004

[8] Min Zhang, Jin-guang Sun, Shi Wang , “Research and Implementation of the CMOS Camera Device Driver
Based on S3C2440”, 2010 International Conference on Intelligent Computation Technology and Automation

@IJAERD-2016, All rights Reserved 104

