e-ISSN (0): 2348-4470

Scientific Journal of Impact Factor (SJIF): 4.14 0-ISSN (P): 2348-6406

International Journal of Advance Engineering and Research
Development

Volume 3, Issue 12, December -2016

Authentication and Authorization Patterns in the Spring Security Framework
Prajapati Keyur P

Asst.Prof, MBICT, New V.V.Nagar — 388120,Gujarat, INDIA

Abstract—In the development of secure applications, patterns are useful in the design of security functionality. Mature
security products or frameworks are usually employed to implement such functionality. Yet, without a deeper comprehension
of these products, the implementation of security patterns is difficult, as a non-guided implementation leads to non-
deterministic results. In this paper, the Spring Security framework is analyzed with the goal of identifying supported
authentication and authorization patterns. With this approach it is possible to overcome the gap between pattern-based
security design and implementation to implement high quality security functionality in software systems.

Keywords - security patterns;security configuration, security framework; security engineering; authorization;
authentication

I. INTRODUCTION

Security engineering aims for a consecutive secure software development by introducing methods, tools, and activities
into a software development process. As such, each phase of the software development needs to consider security aspects: in
the analysis phase security requirements are identified, in the design phase security functionality is modeled in conjunction
with the main business functionality and finally, security solutions are realized in the implementation phase.

Security patterns are an agreed upon method to describe best practice solutions for common security problems. When
designing security functionality for an application such patterns can be instantiated in the design model to cover a certain
security requirement.

The reuse of existing security functionality, i.e., in the form of security components, frameworks or products, is
considered best practice as well, as they usually cover a great percentage of existing security requirements. Their maturity
can usually not be achieved by implementing it completely new, so self-made solutions should extend it as well. By doing so,
the quality of the security functionality of the developed application is increased. Also, as the main focus of software
development lies upon the implementation of the business functionality, the reuse of existing functionality increases the
efficiency of the implementation process.

Implementing security patterns using existing security functionality is complicated. For one, their built-in flexibility to
support many different application contexts leads to a high complexity, requiring a deep understanding of the internal
workings. This often raises the question, if and how the required security patterns can be implemented with the selected
product. In such a case, the security functionality needs to be analyzed by security experts to determine the supported
patterns.

Such an analysis is especially useful, if a model-driven approach is used to automatically generate security-related
artifacts from design models. The identified and supported patterns of the framework or product can be used to describe the
target platform and to generate framework artifacts from design models. Such an approach is part of a reuse-based security
engineering approach, which we outlined in earlier works.

The rest of this paper is structured as followed: Section 2 introduces the Spring Security framework and discusses related
work. In Section 3, the relationship of the pattern-based framework description to our reuse-based security engineering
approach is described. The identified security patterns and their equivalent implementation using Spring Security are covered
in Section 4. In Section 5, a real-world case study is presented, which shows the security pattern implementation using Spring
Security. A conclusion and outlook on future work closes the body of this paper.

II. BACKGROUND AND RELATED WORK

The following section provides a background on the Spring Security framework and discusses related works.
@IJAERD-2016, All rights Reserved 1

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

A. Background on Spring Security

Spring Security is an open source Java framework, providing highly flexible and extensible authentication, authorization,
and access control solutions.

The modular framework consists of loosely coupled components, which are connected using dependency injection. The
core classes and their dependencies are shown in Figure 1. The Authentication class stores user information. It is part of a
SecurityContext class for every authenticated user in an application. An AuthenticationManager loads this data and which
verifies the authenticity of users using offered credentials and information from a user store .

Although it can be used for desktop applications, the main purpose of Spring Security is to secure web applications based
on the Java Platform Enterprise Edition. The framework integrates with many authentication technologies and standards, e.g.,
Lightweight Directory Access Protocol (LDAP), Central Authentication System (CAS), OpenlID and OAuth. Spring Security
also provides support for basic role-based access control. Due to its flexible architecture the framework can easily be adapted
and extended to support other forms of authentication and authorization and access control as well.

B. Related Work

Due to the identification of security patterns, the work is based on common security pattern literature. A comprehensive
catalog of abstract and context-specific security patterns for, e.g., operating systems, can be found in. Identity management as
well access control patterns are discussed in and. Patterns specific to the JEE platform are described in. Authorization
patterns for the Extensible Access Control Markup language (XACML) are discussed in . An excerpt from the patterns
presented in these works is used in this paper to show their support by the Spring

get user information :
SecurityContext
holds

get secured !
object . Authentication
Abstract metadala | N?:tzlgila?a
Securly Source I
Interceptor s
ask for authorization | AccessDecision Authentication
Manager Manager

Figure 1 The main classes of the Spring Security Framework

Security framework. Pattern based security engineering processes are discussed in and , yet they do not consider the
implementation of patterns using security platforms.

An automated retrieval of security patterns in existing software, such as discussed in and, would be useful in the
identification process. Unfortunately, the retrieval rate of the approaches is still to low to be useful for our goals. Applying
them would only show the patterns implemented in the software not all possibilities of the security framework. This is why a
manual approach was applied.

I1l. REUSE-BASED SECURITY ENGINEERING

The pattern-based identification and description of security functionality in existing frameworks is part of a reuse-oriented
security engineering approach, presented in .We argue for reuse of existing security functionality as well as knowledge
throughout the phases of development processes to increase the quality and the development efficiency of the implemented
software artifacts. Security problems, which can not be covered by existing models and functionality, can benefit from a
reuse approach by extending or adapting them to a new context.

For one, the reuse of knowledge about possible threats and attacks against information resources, as well as appropriate
countermeasures, is feasible in the analysis of security requirements of an application.

@IJAERD-2016, All rights Reserved 2

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

The topic discussed in this paper covers the design and implementation phase of the engineering process. In the design
phase existing security knowledge should be used to determine possible solutions for security problems. Security patterns
offer a proven method for describing such best practice solutions and can be integrated with common design patterns. The
implementation of security solutions should be based on existing security functionality, e.g., provided by products,
frameworks or components. These are more mature and field tested, than a new implementation and usually offer support for
existing security standards and technologies.

Yet, to support the security engineering process, there is a need for knowledge of the frameworks used for securing the
software product. During the design phase, knowledge about patterns that are supported by a framework is needed in order to
avoid incompatibilities between design and implementation. When implementing the design it is beneficial to know how to
implement a pattern with a framework. This leads to the need of pattern identification in security frameworks.

IV. AUTHENTICATION AND AUTHORIZATION PATTERN IDENTIFICATION

The following section describes the pattern identification and implementation process using the Spring Security
framework. A focus was put on authentication and authorization patterns, as these are the focus of the framework as well.
Thereby a distinction is made between the format of security guidelines describing policy patterns, and architectural patterns,
describing components using and evaluating the policies.

A. Authentication Patterns Description

The patterns described in this chapter are supporting decisions in the software development process concerning
authentication.
1) Authentication Policy Patterns
We have not found an abstract authentication pattern description in the aforementioned literature, which we deem
relevant. The Authentication Information pattern defines, that a subject has to deliver some sort of information to prove an
association to an identity in an application.

2) Authentication Architectural Patterns

Information about known identities needs to be stored for comparison with user input. The abstract User Store pattern
defines, that user information is stored in some kind of repository. Depending on the type of authentication mechanism
different implementations of the User Store are required. A LDAP directory or a database, containing usernames and
passwords, are examples of User Store pattern implementation.

Enforcing the authentication needs specification of the required components in the software architecture and their
interplay. The Authentication Enforcer pattern describes these components and their interaction in a web-based application.
The pattern abstracts from the applied authentication mechanism, defined through the policies, to enhance reuse. Another aim
of the pattern is to centralize authentication functionality and therefore to reduce redundancy.

The main component is the eponymous Authentication Enforcer, to which authentication requests of the client are sent to.
It takes the information offered by the clients from the request context and compares it to data in the user store. On successful
verification, a subject containing information gained from the user store on the subject is created.

B. Authentication Patterns Identification

The main interface for implementing the Authentication Information pattern is the Spring Security Authentication
interface, as its implementation offers information depending on the authentication mechanism. The Authentication interface
is closely coupled to the AuthenticationProvider that loads the user information.

Accessing storages with the Spring Security framework, as required by the User Store pattern, is achieved through
different implementations of the AuthenticationProvider interface. Each implementation represents a different User Store and
uses varying Authentication concretions, e.g., the

OpenlDAuthenticationProvider offers OpenID authentication by creating an OpenlDAuthenticationToken that implements
the Authentication interface. The

@IJAERD-2016, All rights Reserved 3

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

AuthenticationManager uses the AuthenticationProvider to verify authenticity of users. An AuthenticationManager and its
AuthenticationProviders can be configured using XML. An example configuration is shown in Figure 2. The default
authentication manager is used and the custom authentication provider class can be inserted.

In Spring Security, the Authentication Enforcer pattern is implemented using the filter chain mechanism introduced by

.......

subject: Subject |

: 5
o ¥
.]
‘ l FaRea s i
+ | client: || enforcer: | | store: 1
' . - 1 i
| Client AuthenticationEnforcer | 'UserStore: .
e, e————————————————————————— i
¥)
|
kY context: RequestContext ;

(a) Authentication Enforcer Pattern

Spring Security
Authentication Enforcer

subject: ap:
Authentication AuthenticationProvider

subject E-.‘

e

b
.+ store

.........
- -~

client: | client " Aythentication .--»|
Client “.,_ Enforcer

-

context:
; Request
-ctontext| Context

enforcer ,
ke

filter: AbstractAuthentication | | : Authentication

—

ProcessingFilter Manager

(b) Spring Security Implementation of Authentication Enforcer Pattern
Figure 2 Authentication Enforcer Pattern and Implementation with Spring Security

the Java Servlet Specification. The DefaultLoginPage-GeneratingFilter is executed if the login URL of the application is
called and renders a login page to the client. When the client sends the rendered login form, the

UsernamePasswordAuthenticationFilter tries to authenticate the client using the configured AuthenticationManager.

Writing an own filter for supporting, e.g., biometric authentication is possible, too. For each filter specified in the filter
chain, there must be a Java class with the same name. The filter chain and authentication provider offers flexibility in adding
new authentication mechanisms and user stores needed to support the Authentication Enforcer pattern.

C. Authorization Patterns Description

This section introduces patterns that can be used to describe or enforce authorization. Because there is a close
relationship between authentication and authorization, some architectural patterns require authentication or even offer it.
1) Authorization Policy Patterns

@IJAERD-2016, All rights Reserved 4

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

The Authorization pattern is used to define access control for resources at a high level of abstraction. A subject is
assigned a right for a resource. High level of abstraction means, that subject, right and resource are not specified concretely

and can be of any kind.

The direct interpretation of the Authorization pattern is called Identity-Based Access Control. Due to the structure, the
concrete Subject gets directly assigned a Permission to access a Resource in a specific way. Thus a fine-grained definition of
access control is established. Usually IBAC is implemented using access control lists (ACL).

Role-Based Access Control (RBAC), described as a pattern in, is a specialization of the Authorization pattern, which
refines the right assignment. Instead of directly assigning rights, a Subject gets assigned a Role, which

" Role-Based Access Control ~._

.
a

N
[

role:

object: i
: ProtectionObject(*] : ;

J

Role [*]

right: _-'.
Right 3

o

(2) Role-Based Access Control Pattern

Spring Security
Role-Based Access Control
user: right:

User Confighttribute
LA E]
User s, L--etteee, . right
] RBAC i
object .+ “.._ object
3 a
url: URL methed

Methaod

.................
- e

-
" L

Policy Enforcement Paint (PEP) o

@
#

¢ | subject: pep: rules: '

+ | Subject J PEP [*] AuthorizationRules[*] | ¢
request: : .
.. ‘Request:

EEE T

L L

(c) Policy Enforcement Point Pattern

@IJAERD-2016, All rights Reserved

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

Requests on methods are intercepted using the Spring Aspect-Oriented Programming (AOP) feature. The Spring
AnnotationSecurityAspect enhances security annotated methods. The advice of the aspect redirects method calls to the
AspectMethodSecurityInterceptor, which is an implementation of the AbstractSecuritylnterceptor interface, as well.

Thus, requests to URLs and methods are intercepted by the Spring Security framework and processed to enforce access
control. The AuthorizationRules are described by the AuthorizationPolicy that is used. Method annotation and expressions in
configuration for URLSs describe the concrete Authorization for a Resource. The PEP pattern is used with Spring Security, if
the Authorization pattern is set up and the FilterChain is configured or method security is activated .

The Authorization Enforcer pattern is the concretion of the PEP for Java EE applications. Thus, the mentioned protection
of methods and URLSs is an implementation of the pattern. The Spring Security AuthenticationManager takes the role of the
Authentication Provider and the several authentication filters as well as the AuthorizationManager represent the
Authorization Enforcer role. Thus, the Authorization Enforcer pattern can be implemented by using Spring Security access
control. The Intercepting Web Agent pattern cannot be applied to the method protection, because the pattern defines
application execution after access control. Thus the implementation of the pattern is applied through configuration of the
Authentication Enforcer pattern, the Authorization pattern and a configured URL protection.

E. Discussion

The examination of the Spring Security framework revealed support for most known security patterns but failed to offer
developers guidance on their implementation. This handicap has been overcome, as the proposed security pattern
implementation templates enable the efficient mapping of pattern-based security design in future development processes.
Thus, it allows security knowledge reuse as proposed by our security engineering approach described in Section IllI.

The identification process was thereby laborious as an intensive black box as well as white box examination of the
framework was performed. This was only possible due to the excellent documentation and access to the framework’s source
code, which is not always the case, e.g., with proprietary frameworks, and makes the identification more difficult.

We tried to document the templates as independent of any application context as possible and in the implementation case
study, discussed in the next section, we found that the templates are well crafted and suitable. But we do not claim
completeness or efficiency. In fact, the templates as well as the pattern to implementation mapping may need to be adjusted
to fit a specific context as well as future versions of the framework.

V. IMPLEMENTING CASE STUDY

The knowledge described in the previous sections combined with, e.g., use cases, misuse cases and component

TABLE Il. SUPPORTED AUTHORIZATION PATTERNS
Authorization Patterns Spring Security Implementation
Hierarchical roles using
Role-Based Access Control
GrantedAuthorities
Identitty-Based Access Control Access Control Lists

Simplified implementation using
Attribute-Based Access Control
Spring Expression Language

Aspect interceptor for method
Authorization Enforcer
access
Filter mechanism of Java

Intercepting Web Agent

Servlets for URL access

@IJAERD-2016, All rights Reserved 6

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

diagrams has been applied to the development of the security functionality of a web application. Spring Security was used as
the security platform used to protect the application.

A. KITCampusGuide Scenario Descriptions

The KITCampusGuide application is a navigation tool supporting students, teachers and staff in finding and navigating to
points of interest (POI), i.e., any kind of landmark, such as a canteen, an auditorium or offices. Due to restricted areas on the
campus and several other requirements, the search for and display of POIs has to be restricted. Users should be able to create
private POIs, which can only be seen and modified by themselves. As such, management of POIs is the most relevant to
security.

B. Secure Development of a POl Manager Component
A POI Management component was developed by modeling the requirements using UML use cases. Security analysis
resulted in a need for user authentication and authorization, when creating private POIls. An architectural decision was made

to use a single factor authentication using username-password pairs and RBAC for authorization policies. The security
functionality is independent from the

<user name="student1"... authorities="ROLE_STUDENT" /> <user name="admin" ... authorities="ROLE_ADMIN" />
(a) User definition and role assignment
<bean id="rightsToRoles" class="o0ss.access.hierarchicalroles.RoleHierarchylmpl"> <property name="hierarchy">
ROLE_ADMIN >ROLE_STUDENT ROLE_STUDENT > PERM_DELETE_POI

;}property>
</bean>

(b) Role definition and permission assignment
@RolesAllowed("PERM_DELETE POI") public void delete(PointOfInterest poi) { ... }
(c) Configuring access control on a method using annotations

<http use-expressions="true > <intercept-url pattern="/poi/*/delete”’
access="hasRole(PERM_DELETE POI)”/>
</http>

(d) Configuring access control on URLs

Figure 4 Implementing Role-Based Access Control in Spring Security (unnecessary information is stripped with «...”)
functional logic and supports access control to restrict access using an IWA. The architecture model was enhanced using the
appropriate pattern descriptions.

Using the previously acquired knowledge about security patterns supported by the Spring Security framework, the
security functionality was implemented by providing appropriate configurations to the framework and applying annotations
to relevant methods. Figure 2 shows the necessary configurations to implement RBAC for a delete operation on POls.
Thereby two roles are defined and assigned to two different users. The role "ROLE_ADMIN" inherits the permissions of the
role "ROLE_STUDENT", which in the shown example includes the permission to delete a POI. This is controlled using an
annotation for the "delete" method as well as an authorization filter for the URL-based "delete™ operation.

C. Problems and Experiences

Finding the level of abstraction needed for the application is an important issue during design phase. In the case study the
whole development process was traversed by a single person and the application size was manageable. But as the size of the
application grows, this could lead to problems. A hierarchy of patterns indicated in the previous chapters would close the gap

@IJAERD-2016, All rights Reserved 7

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

between a high level of abstraction and a level close to implementation. This is helpful in concretizing the design step by
step.

VI. CONCLUSION AND FUTURE WORK

In this paper, the open source security framework Spring Security was examined in its support for common security
patterns for authentication and authorization. Patterns for RBAC and ABAC as well as for username/password-based
authentication were identified and appropriate best-practice implementation templates for Spring Security were provided.
These templates can be used as a reference to implement the mentioned patterns in other projects. Further, the benefits of a
pattern-based security framework description for a model-driven approach were discussed and its role in a reuse-based
security engineering process was briefly explained.

In continuation of this work, the possible security design and implementation decisions need to be captured in flexible
variation models to provide a decision support. Also, the relationships between the patterns will be determined and specified
to identify mandatory or optional dependencies between the design and implementation patterns. In future research, we focus
on completing the different parts of our reuse-based security engineering process.

REFERENCES

[1] A. Dikanski and S. Abeck, “Towards a Reuse-oriented Security Engineering for Web-based Applications and
Services,” Proc. Seventh International Conference on Internet and Web Applications and Services (ICIW 2012),
Stuttgart, June 2012, pp. 282-285.

[2]. “Spring Security.” SpringSource Community, p. Apache License, Apr. 2008.

[3] -M. Wiesner, “Introduction to Spring Security 3 /3.1,” SpringOne 2GX. Chicago, Oct.-2010.

[4]] N. A. Delessy, E. B. Fernandez, and M. M. Larrondo-Petrie, “A Pattern Language for Identity Management,”
International Multi-Conference on Computing in the Global Information Technology, Guadeloupe City, March
2007, pp. 31-31.

[5]. E. B. Fernandez, G. Pernul, and M. M. Larrondo-Petrie, “Patterns and Pattern Diagrams for Access Control,” Proc.
Trust, Privacy and Security in Digital Business (TrustBus 2008), Turin, Italy, Sept. 2008,PP. 38-47.

[6] .R. K. Keller, R. Schauer, S. Robitaille, and P. Page, “Pattern-based Reverse-Engineering of Design Components,”
Proc. International Conference on Software Engineering, Los Angeles, 1999, pp. 226— 235.

@IJAERD-2016, All rights Reserved 8

