
 International Journal of Advance Engineering and Research
Development

Volume 3, Issue 12, December -2016

@IJAERD-2016, All rights Reserved 1

Scientific Journal of Impact Factor (SJIF): 4.14
e-ISSN (O): 2348-4470

p-ISSN (P): 2348-6406

Authentication and Authorization Patterns in the Spring Security Framework

Prajapati Keyur P

Asst.Prof, MBICT, New V.V.Nagar – 388120,Gujarat, INDIA

Abstract—In the development of secure applications, patterns are useful in the design of security functionality. Mature

security products or frameworks are usually employed to implement such functionality. Yet, without a deeper comprehension

of these products, the implementation of security patterns is difficult, as a non-guided implementation leads to non-

deterministic results. In this paper, the Spring Security framework is analyzed with the goal of identifying supported

authentication and authorization patterns. With this approach it is possible to overcome the gap between pattern-based
security design and implementation to implement high quality security functionality in software systems.

Keywords - security patterns;security configuration, security framework; security engineering; authorization;

authentication

I. INTRODUCTION

Security engineering aims for a consecutive secure software development by introducing methods, tools, and activities

into a software development process. As such, each phase of the software development needs to consider security aspects: in

the analysis phase security requirements are identified, in the design phase security functionality is modeled in conjunction

with the main business functionality and finally, security solutions are realized in the implementation phase.

Security patterns are an agreed upon method to describe best practice solutions for common security problems. When

designing security functionality for an application such patterns can be instantiated in the design model to cover a certain

security requirement.

The reuse of existing security functionality, i.e., in the form of security components, frameworks or products, is

considered best practice as well, as they usually cover a great percentage of existing security requirements. Their maturity

can usually not be achieved by implementing it completely new, so self-made solutions should extend it as well. By doing so,

the quality of the security functionality of the developed application is increased. Also, as the main focus of software

development lies upon the implementation of the business functionality, the reuse of existing functionality increases the

efficiency of the implementation process.

Implementing security patterns using existing security functionality is complicated. For one, their built-in flexibility to

support many different application contexts leads to a high complexity, requiring a deep understanding of the internal

workings. This often raises the question, if and how the required security patterns can be implemented with the selected

product. In such a case, the security functionality needs to be analyzed by security experts to determine the supported

patterns.

Such an analysis is especially useful, if a model-driven approach is used to automatically generate security-related

artifacts from design models. The identified and supported patterns of the framework or product can be used to describe the

target platform and to generate framework artifacts from design models. Such an approach is part of a reuse-based security

engineering approach, which we outlined in earlier works.

The rest of this paper is structured as followed: Section 2 introduces the Spring Security framework and discusses related

work. In Section 3, the relationship of the pattern-based framework description to our reuse-based security engineering
approach is described. The identified security patterns and their equivalent implementation using Spring Security are covered

in Section 4. In Section 5, a real-world case study is presented, which shows the security pattern implementation using Spring

Security. A conclusion and outlook on future work closes the body of this paper.

II. BACKGROUND AND RELATED WORK

The following section provides a background on the Spring Security framework and discusses related works.

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 2

A. Background on Spring Security

Spring Security is an open source Java framework, providing highly flexible and extensible authentication, authorization,

and access control solutions.

The modular framework consists of loosely coupled components, which are connected using dependency injection. The

core classes and their dependencies are shown in Figure 1. The Authentication class stores user information. It is part of a

SecurityContext class for every authenticated user in an application. An AuthenticationManager loads this data and which

verifies the authenticity of users using offered credentials and information from a user store .

Although it can be used for desktop applications, the main purpose of Spring Security is to secure web applications based

on the Java Platform Enterprise Edition. The framework integrates with many authentication technologies and standards, e.g.,

Lightweight Directory Access Protocol (LDAP), Central Authentication System (CAS), OpenID and OAuth. Spring Security

also provides support for basic role-based access control. Due to its flexible architecture the framework can easily be adapted

and extended to support other forms of authentication and authorization and access control as well.

B. Related Work

Due to the identification of security patterns, the work is based on common security pattern literature. A comprehensive
catalog of abstract and context-specific security patterns for, e.g., operating systems, can be found in. Identity management as

well access control patterns are discussed in and. Patterns specific to the JEE platform are described in. Authorization

patterns for the Extensible Access Control Markup language (XACML) are discussed in . An excerpt from the patterns

presented in these works is used in this paper to show their support by the Spring

Figure 1 The main classes of the Spring Security Framework

Security framework. Pattern based security engineering processes are discussed in and , yet they do not consider the

implementation of patterns using security platforms.

An automated retrieval of security patterns in existing software, such as discussed in and, would be useful in the

identification process. Unfortunately, the retrieval rate of the approaches is still to low to be useful for our goals. Applying

them would only show the patterns implemented in the software not all possibilities of the security framework. This is why a

manual approach was applied.

III. REUSE-BASED SECURITY ENGINEERING

The pattern-based identification and description of security functionality in existing frameworks is part of a reuse-oriented

security engineering approach, presented in .We argue for reuse of existing security functionality as well as knowledge

throughout the phases of development processes to increase the quality and the development efficiency of the implemented

software artifacts. Security problems, which can not be covered by existing models and functionality, can benefit from a

reuse approach by extending or adapting them to a new context.

For one, the reuse of knowledge about possible threats and attacks against information resources, as well as appropriate

countermeasures, is feasible in the analysis of security requirements of an application.

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 3

The topic discussed in this paper covers the design and implementation phase of the engineering process. In the design

phase existing security knowledge should be used to determine possible solutions for security problems. Security patterns

offer a proven method for describing such best practice solutions and can be integrated with common design patterns. The

implementation of security solutions should be based on existing security functionality, e.g., provided by products,

frameworks or components. These are more mature and field tested, than a new implementation and usually offer support for

existing security standards and technologies.

Yet, to support the security engineering process, there is a need for knowledge of the frameworks used for securing the

software product. During the design phase, knowledge about patterns that are supported by a framework is needed in order to

avoid incompatibilities between design and implementation. When implementing the design it is beneficial to know how to
implement a pattern with a framework. This leads to the need of pattern identification in security frameworks.

IV. AUTHENTICATION AND AUTHORIZATION PATTERN IDENTIFICATION

The following section describes the pattern identification and implementation process using the Spring Security

framework. A focus was put on authentication and authorization patterns, as these are the focus of the framework as well.

Thereby a distinction is made between the format of security guidelines describing policy patterns, and architectural patterns,

describing components using and evaluating the policies.

A. Authentication Patterns Description

The patterns described in this chapter are supporting decisions in the software development process concerning

authentication.

1) Authentication Policy Patterns

We have not found an abstract authentication pattern description in the aforementioned literature, which we deem

relevant. The Authentication Information pattern defines, that a subject has to deliver some sort of information to prove an

association to an identity in an application.

2) Authentication Architectural Patterns

Information about known identities needs to be stored for comparison with user input. The abstract User Store pattern
defines, that user information is stored in some kind of repository. Depending on the type of authentication mechanism

different implementations of the User Store are required. A LDAP directory or a database, containing usernames and

passwords, are examples of User Store pattern implementation.

Enforcing the authentication needs specification of the required components in the software architecture and their

interplay. The Authentication Enforcer pattern describes these components and their interaction in a web-based application.

The pattern abstracts from the applied authentication mechanism, defined through the policies, to enhance reuse. Another aim

of the pattern is to centralize authentication functionality and therefore to reduce redundancy.

The main component is the eponymous Authentication Enforcer, to which authentication requests of the client are sent to.

It takes the information offered by the clients from the request context and compares it to data in the user store. On successful

verification, a subject containing information gained from the user store on the subject is created.

B. Authentication Patterns Identification

The main interface for implementing the Authentication Information pattern is the Spring Security Authentication

interface, as its implementation offers information depending on the authentication mechanism. The Authentication interface

is closely coupled to the AuthenticationProvider that loads the user information.

Accessing storages with the Spring Security framework, as required by the User Store pattern, is achieved through

different implementations of the AuthenticationProvider interface. Each implementation represents a different User Store and

uses varying Authentication concretions, e.g., the

OpenIDAuthenticationProvider offers OpenID authentication by creating an OpenIDAuthenticationToken that implements
the Authentication interface. The

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 4

AuthenticationManager uses the AuthenticationProvider to verify authenticity of users. An AuthenticationManager and its

AuthenticationProviders can be configured using XML. An example configuration is shown in Figure 2. The default

authentication manager is used and the custom authentication provider class can be inserted.

In Spring Security, the Authentication Enforcer pattern is implemented using the filter chain mechanism introduced by

(a) Authentication Enforcer Pattern

(b) Spring Security Implementation of Authentication Enforcer Pattern

Figure 2 Authentication Enforcer Pattern and Implementation with Spring Security

the Java Servlet Specification. The DefaultLoginPage-GeneratingFilter is executed if the login URL of the application is
called and renders a login page to the client. When the client sends the rendered login form, the

UsernamePasswordAuthenticationFilter tries to authenticate the client using the configured AuthenticationManager.

Writing an own filter for supporting, e.g., biometric authentication is possible, too. For each filter specified in the filter

chain, there must be a Java class with the same name. The filter chain and authentication provider offers flexibility in adding

new authentication mechanisms and user stores needed to support the Authentication Enforcer pattern.

C. Authorization Patterns Description

This section introduces patterns that can be used to describe or enforce authorization. Because there is a close
relationship between authentication and authorization, some architectural patterns require authentication or even offer it.

1) Authorization Policy Patterns

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 5

The Authorization pattern is used to define access control for resources at a high level of abstraction. A subject is

assigned a right for a resource. High level of abstraction means, that subject, right and resource are not specified concretely

and can be of any kind.

The direct interpretation of the Authorization pattern is called Identity-Based Access Control. Due to the structure, the

concrete Subject gets directly assigned a Permission to access a Resource in a specific way. Thus a fine-grained definition of

access control is established. Usually IBAC is implemented using access control lists (ACL).

Role-Based Access Control (RBAC), described as a pattern in, is a specialization of the Authorization pattern, which
refines the right assignment. Instead of directly assigning rights, a Subject gets assigned a Role, which

(b) Implementing Role-Based Access Control with Spring Security

(c) Policy Enforcement Point Pattern

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 6

Requests on methods are intercepted using the Spring Aspect-Oriented Programming (AOP) feature. The Spring

AnnotationSecurityAspect enhances security annotated methods. The advice of the aspect redirects method calls to the

AspectMethodSecurityInterceptor, which is an implementation of the AbstractSecurityInterceptor interface, as well.

Thus, requests to URLs and methods are intercepted by the Spring Security framework and processed to enforce access

control. The AuthorizationRules are described by the AuthorizationPolicy that is used. Method annotation and expressions in

configuration for URLs describe the concrete Authorization for a Resource. The PEP pattern is used with Spring Security, if

the Authorization pattern is set up and the FilterChain is configured or method security is activated .

The Authorization Enforcer pattern is the concretion of the PEP for Java EE applications. Thus, the mentioned protection

of methods and URLs is an implementation of the pattern. The Spring Security AuthenticationManager takes the role of the

Authentication Provider and the several authentication filters as well as the AuthorizationManager represent the

Authorization Enforcer role. Thus, the Authorization Enforcer pattern can be implemented by using Spring Security access

control. The Intercepting Web Agent pattern cannot be applied to the method protection, because the pattern defines

application execution after access control. Thus the implementation of the pattern is applied through configuration of the

Authentication Enforcer pattern, the Authorization pattern and a configured URL protection.

E. Discussion

The examination of the Spring Security framework revealed support for most known security patterns but failed to offer
developers guidance on their implementation. This handicap has been overcome, as the proposed security pattern

implementation templates enable the efficient mapping of pattern-based security design in future development processes.

Thus, it allows security knowledge reuse as proposed by our security engineering approach described in Section III.

The identification process was thereby laborious as an intensive black box as well as white box examination of the

framework was performed. This was only possible due to the excellent documentation and access to the framework’s source

code, which is not always the case, e.g., with proprietary frameworks, and makes the identification more difficult.

We tried to document the templates as independent of any application context as possible and in the implementation case

study, discussed in the next section, we found that the templates are well crafted and suitable. But we do not claim

completeness or efficiency. In fact, the templates as well as the pattern to implementation mapping may need to be adjusted

to fit a specific context as well as future versions of the framework.

V. IMPLEMENTING CASE STUDY

The knowledge described in the previous sections combined with, e.g., use cases, misuse cases and component

TABLE II. SUPPORTED AUTHORIZATION PATTERNS

Authorization Patterns Spring Security Implementation

Role-Based Access Control

Hierarchical roles using

GrantedAuthorities

Identitty-Based Access Control Access Control Lists

Attribute-Based Access Control

Simplified implementation using

Spring Expression Language

Authorization Enforcer

Aspect interceptor for method

access

Intercepting Web Agent

Filter mechanism of Java

Servlets for URL access

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 7

diagrams has been applied to the development of the security functionality of a web application. Spring Security was used as

the security platform used to protect the application.

A. KITCampusGuide Scenario Descriptions

The KITCampusGuide application is a navigation tool supporting students, teachers and staff in finding and navigating to

points of interest (POI), i.e., any kind of landmark, such as a canteen, an auditorium or offices. Due to restricted areas on the

campus and several other requirements, the search for and display of POIs has to be restricted. Users should be able to create

private POIs, which can only be seen and modified by themselves. As such, management of POIs is the most relevant to
security.

B. Secure Development of a POI Manager Component

A POI Management component was developed by modeling the requirements using UML use cases. Security analysis

resulted in a need for user authentication and authorization, when creating private POIs. An architectural decision was made

to use a single factor authentication using username-password pairs and RBAC for authorization policies. The security

functionality is independent from the

<user name="student1"... authorities="ROLE_STUDENT" /> <user name="admin" ... authorities="ROLE_ADMIN" />

(a) User definition and role assignment

<bean id="rightsToRoles" class="oss.access.hierarchicalroles.RoleHierarchyImpl"> <property name="hierarchy">

ROLE_ADMIN >ROLE_STUDENT ROLE_STUDENT > PERM_DELETE_POI

…

</property>

</bean>

(b) Role definition and permission assignment

@RolesAllowed("PERM_DELETE_POI") public void delete(PointOfInterest poi) { … }

(c) Configuring access control on a method using annotations

<http use-expressions=”true”> <intercept-url pattern=”/poi/*/delete”

access=”hasRole(PERM_DELETE_POI)”/>

</http>

(d) Configuring access control on URLs

Figure 4 Implementing Role-Based Access Control in Spring Security (unnecessary information is stripped with “…”)

functional logic and supports access control to restrict access using an IWA. The architecture model was enhanced using the
appropriate pattern descriptions.

Using the previously acquired knowledge about security patterns supported by the Spring Security framework, the

security functionality was implemented by providing appropriate configurations to the framework and applying annotations

to relevant methods. Figure 2 shows the necessary configurations to implement RBAC for a delete operation on POIs.

Thereby two roles are defined and assigned to two different users. The role "ROLE_ADMIN" inherits the permissions of the

role "ROLE_STUDENT", which in the shown example includes the permission to delete a POI. This is controlled using an

annotation for the "delete" method as well as an authorization filter for the URL-based "delete" operation.

C. Problems and Experiences

Finding the level of abstraction needed for the application is an important issue during design phase. In the case study the
whole development process was traversed by a single person and the application size was manageable. But as the size of the

application grows, this could lead to problems. A hierarchy of patterns indicated in the previous chapters would close the gap

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 8

between a high level of abstraction and a level close to implementation. This is helpful in concretizing the design step by

step.

VI. CONCLUSION AND FUTURE WORK

In this paper, the open source security framework Spring Security was examined in its support for common security

patterns for authentication and authorization. Patterns for RBAC and ABAC as well as for username/password-based

authentication were identified and appropriate best-practice implementation templates for Spring Security were provided.

These templates can be used as a reference to implement the mentioned patterns in other projects. Further, the benefits of a
pattern-based security framework description for a model-driven approach were discussed and its role in a reuse-based

security engineering process was briefly explained.

In continuation of this work, the possible security design and implementation decisions need to be captured in flexible

variation models to provide a decision support. Also, the relationships between the patterns will be determined and specified

to identify mandatory or optional dependencies between the design and implementation patterns. In future research, we focus

on completing the different parts of our reuse-based security engineering process.

REFERENCES

[1] A. Dikanski and S. Abeck, “Towards a Reuse-oriented Security Engineering for Web-based Applications and

Services,” Proc. Seventh International Conference on Internet and Web Applications and Services (ICIW 2012),

Stuttgart, June 2012, pp. 282–285.

[2]. “Spring Security.” SpringSource Community, p. Apache License, Apr. 2008.

[3] .M. Wiesner, “Introduction to Spring Security 3 /3.1,” SpringOne 2GX. Chicago, Oct.-2010.

[4]] N. A. Delessy, E. B. Fernandez, and M. M. Larrondo-Petrie, “A Pattern Language for Identity Management,”
International Multi-Conference on Computing in the Global Information Technology, Guadeloupe City, March

2007, pp. 31–31.

[5]. E. B. Fernandez, G. Pernul, and M. M. Larrondo-Petrie, “Patterns and Pattern Diagrams for Access Control,” Proc.

Trust, Privacy and Security in Digital Business (TrustBus 2008), Turin, Italy, Sept. 2008,PP. 38–47.

[6] .R. K. Keller, R. Schauer, S. Robitaille, and P. Page, “Pattern-based Reverse-Engineering of Design Components,”

Proc. International Conference on Software Engineering, Los Angeles, 1999, pp. 226– 235.

