

International Journal of Advance Engineering and Research Development

e-ISSN (O): 2348-4470

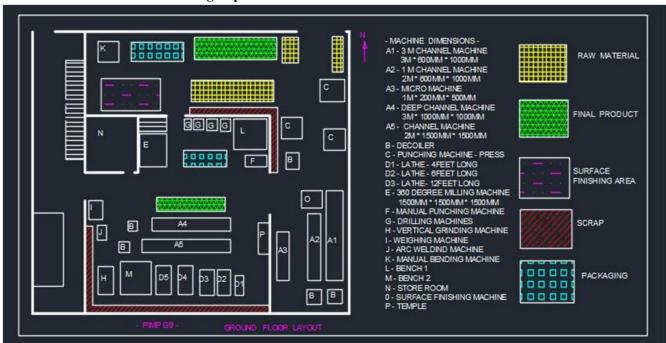
p-ISSN (P): 2348-6406

Volume 4, Issue 2, February -2017

Productivity Improvement Through Plant Layout And Inventory Management In Small And Medium Enterprises-A Review Paper

Manoj pal¹, Yash Chauhan², Krushank Limbachiya³, Rushi Panchal⁴, Hitarth Parikh⁵

¹ Assistant professor, Department of Mechanical Engineering, Institute Of Technology And Management Universe, Vadodara ^{2,3,4,5} Students, Department of Mechanical Engineering, Institute Of Technology And Management Universe, Vadodara


Abstract: - The objective of this project is to study plant layout of a small and medium enterprises by developing a facility plant layout which can accommodate more products by utilizing less area and also reduce time consumption problems. In this paper we are going to review about multiple published research papers which are mainly focused on "Optimization of plant layout" by using plant optimization techniques like craft, aldep, core lap, also it includes optimization by systematic layout planning(slp) and using string diagrams.

Keywords: - PIMP, Aldep, Core lap, Systematic layout Planning(slp), String diagram

I. INTRODUCTION

Our project is related to Industry Defined Problem which concern on the optimize of the plant layout. Our company layout comprehends of roll forming machines, lathe machines, drilling machines, punching machines and grinding wheels. The extensive product of the company is MCB channels. The flow of productions of MCB channels from a coil of sheet to the final exquisite product is been studied by our team. The worriment of the complications faced by the company is due to the current layout dispositioning of the machines, lack of material handling, dispatching and expediting, loading and scheduling. Our prominent concern is material handling which reckon with, the time taken for particular product, men power requirements, total material movement and the arrangement of machines. All factors mentioned above have their prominent influence on plant layout. Various research and study being done on the principles of plant layouts and types, factor affecting layouts, plant layout optimization, travel charts, flow process charts, flow diagrams, string diagrams, templates, scale model, layout drawings, analytical tools of plant layouts.

Distance between different machine groups.

II.	Distance	hetween	different	machine groups.
11.	Distance	Detween	unicicni	macinic groups.

					0			
	1	2	3	4	5	6	7	8
1	0	20	40	30	35	35	70	60
2	20	0	35	25	15	25	50	45
3	25	35	0	10	45	50	65	30
4	40	20	10	0	50	25	40	45
5	50	20	45	50	0	25	40	20
6	40	25	30	20	30	0	20	25
7	70	55	55	40	30	20	0	15
8	60	45	45	45	15	25	15	0

1,4- Rolling Machines

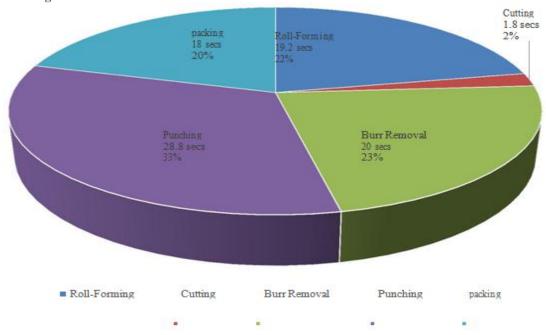
7- Packing

2- Punching Machine

8- Storage

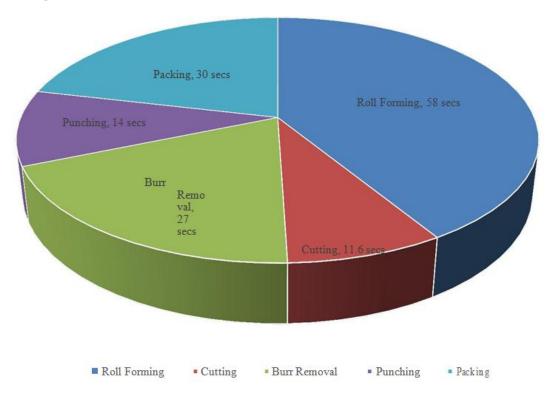
3- Lathe

5- Raw Material Storage


6- Drilling

III. TIME TAKEN FOR 1M MCB CHANNEL

Here we have observed the different machining processes of different products on particular machine. We have taken time for each and every machining process for five to six times and then consider the average timing for those particular machining processes.


There are two main products of the company that is one-meter channel and three meter channels. The company manufactures several products but their main products include these two channels, so we calculated the time taken for each machining processes of channel and made a pie chart which shows different processing time, which is given below.

Production Timing For 1Meter Channel

IV. TIME TAKEN FOR 3M MCB CHANNEL

Production Timing For 3 Meter Channel

So after calculating this timing we can conclude that the maximum time taken is by the roll forming operation it takes 41.1% of the total operation timing for the three-meter channel. Then for the second highest time is taken by packing 21.1% and then by burr removal 19.1% punching 10% and cutting operations 8.2%.

V. LITERATURE REVIEW

1) Author-Vivekanand s Gogi¹, Rohith D², Shashi Kiran K³, Suhail M Shaikh⁴ Title- Efficiency Improvement Of A Plant Lavout

Journal- International Journal Of Innovative Research In Science Engineering And Technology Published: - April 2014.

The objective of this research paper was to study the flow pattern and the relationship of overall plant layout and construct a new plant layout, To reduce the check points and relocate the work pieces, To improve the efficiency by using simulations. A major issue to be addressed in facility of plant layout decisions in manufacturing is to minimize the distance travel and it should be comfortable for future changes in product demand and product mix. Instead of minimizing total distance travel we can minimized the distance of material movement.

2) Author- Parminder Singh, Manjeet Singh

Title- Optimization Of Assembly Line And Plant Layout In A Mass Production Industry Journal-International Journal Of Engineering Science Invention

Published: - April 2015

In this paper the layout cost is calculated by taking the distance matrix and flow matrix. The distance matrix is obtained by converting the layout diagram into STEP file format which is taken as input to java program and output is obtained as distance matrix. The initial layout is now optimized in order to reduce the layout cost which is done by replacements of machine in proper sequence such that the distance matrix is altering every time and due to this the layout cost is changed.

3) Author-Bobby John¹, Jubin James², R.Mahesh Rengaraj³

Title- Analysis And Optimization Of Plant Layout Using Relative Allocation Of Facilities Technique Journal-International Journal Of Emerging Technology And Advanced Engineering

Published: - August 2013

This paper tells that the production rate and the utilization of machines depend on how well the various machines; production facilities and employee's amenities are located in the plant.

In this thesis work, a hybrid model that combines a facility allocation techniques and software analysis is done. The existing plant layout was according to craft and an improved new plant layout is proposed. So after it is implemented both the layouts are simulated using a simulation software ARENA. Results of the new plant layout and the old plant layout are compared and it is found that the utilization of the machines in the new layout is slightly increased. Relocation of the machines is done such that the flow of the material is smoother.

4) Author- Sanjay B. Naik, Dr. Shrikant kallurkar Title- A Literature Review On Efficient Plant Layout Design Journal- International Journal Of Industrial Engineering Research And Development Published: - August 2016

In order to achieve maximum returns from the capacity of facilities, it is very essential to optimize plant layout for proposed units or re-layout of existing manufacturing units as per the changing market scenario. Many researchers have developed lot of models based on heuristic and meta-heuristic approach by considering different case studies. Heuristic methods such as Tabu Search (TS), Simulated Annealing (SA), and Genetic Algorithms (GA) are common tools in optimization. Limitations of those heuristic methods are time consuming and cannot get the feel of the actual setting and actual dimension of the machine and equipment. Beside the heuristic methods, simulation technique is a powerful tool used by many researchers in creating and evaluating the proposed layout design before implementation. Simulation tools that commonly used in facility planning are Arena, QUEST, IGRIP, ProModel and Witness. Looking towards the limitations of the methods discussed so far, it is revealed that the more efficient and comprehensive method can be developed by using combination of heuristic methods and simulation technique. It is also revealed that there is a scope for developing multi-objective optimization techniques particularly for small scale sectors having few departments.

5) Author- Khusna Dwijayanti¹, Siti Zawiah Md Dawal², Jamasri³, and Hideki Aoyama⁴

Title- A Proposed Study On Facility Planning And Design In manufacturing Process Journal- International Multiconference Of Engineers And Computer Scientist Published: - March 2010

In conclusion it is found that analysis of facility design such as layout and material handling system is very important in manufacturing industry. Proper analysis of existing or previous plant layout design could improve the performance of production line. It could decrease bottleneck problems, minimize material handling problems and its cost, reduces idle time, raise the efficiency and utilization of labours, equipment and space. Heuristic methods such as Tabu search(TS), Simulated Annealing(SA), and Genetic Algorithms(GA) are common tools in optimization. Limitations of those heuristic methods are time consuming and cannot get the feel of the actual setting and actual dimension of the machine and equipment. Besides the heuristic methods, simulation techniques is a powerful tool that used by many researcher in creating and evaluating the proposed layout design before implementation.

The proposed research that will be conducted by author is evaluating existing plant layout arrangement using combinations of heuristic methods simulation technique.

VI. CONCLUSIONS

After referring to various research papers, review papers, analytical tools of plant layout we can yield the conclusion that our expectations for the optimizations of the plant layout can be enact to achieve our goal that is to escalate the production. The above goal can be achieved by using various means and tools like time study, work measurement, method analysis, systematic layout planning, CRAFT, ALDEP, Core-lap, simulation software like arena can also be used.

VII. ACKNOWLEDGEMENT

The completion of this project phase would not have taken place without the contribution of many key people. The progress of the project was supervised by **Prof. Manojkumar Ramchandra Pal** from Mechanical Department of Institute Of Technology And Management Universe, Vadodara. A special thanks to our Head Of Department **Prof. Minesh Patel.** Their guidance, advice and wisdom throughout this work are also greatly appreciated.

Finally, special thanks to family and colleagues who provided constant support and encouragement during this work.

VIII. REFERENCES

- [1] Richard Muther, 'Pant layout and flow improvement', McGraw-Hill Companies: New York, 1994.
- [2]. Micheal schenk, "Manufacturing Facilities Location, Planning and Design", PWS-KENT Publishing, Boston U.S.A., vol 12, pp. 337-339, 1988.
- [3]. Nehal Elsayar, Elwood S., Armour G. C. and Vollmann, T. E., "Allocating Facilities with Computerized Relative Allocation Facility Technique", Harvard Business Review, Vol. 42, No.2, pp.136-158, March-April 1964.
- [4]. Saifallah benjafaar & Hillier, F. S., "Quantitative Tools for Plant Layout Analysis, Journal of Industrial Engineering", IIE Transaction, Vol. 14, No. 1, pp. 33-40, 1963.
- [5]. Tobiah r. master, Francis, R. L.; L. F. McGinnis; and J. A. White. "Facility Layout and Location: An Analytical Approach". 2nd ed. Englewood Cliffs, NJ: Prentice Hall, vol. 9, pp. 153-155, 1992.
- [6]. Thomas lacknsonen, "Facilities Layout Optimization Method Combining Human Factors and SLP", International Conference on Information Management, Innovation Management and Industrial Engineering, Vol 1, pp. 608-611, 2010.
- [7]. Anucha Watanapa, "Analysis Plant Layout Design for Effective Production", Proceeding of the International Multi Conference of Engineers and Computer Scientists, Vol.2, pp. 543-559, 2011.
- [8]. Dr. M. Khoshnevisan Francis, R. L. and J. A. White, "Facility Layout and Location: An Analytical Approach", Prentice Hall, 2/E, Englewood Cliffs, NJ, 1993.
- [9] Falkenauer, E. and Delchambre, A.(1992). A Genetic Algorithm for Bin Packing and Line Balancing', Proceedings of the 1992 IEEE I nternational Conference on Robotics and Automation, May 10-15, 1992, Nice, France. IEEE Computer Society Press, Los Alamitos. [10] Falkenauer, E. (1997)'A Grouping Genetic Algorithm for Line Balancing with Resource Dependent Task Times', Proceedings of the fourth International Conference on neural Information Processing (ICONIP'97), University of Otago, Dunedin, NewZealand, November 24-28, 1997. pp 464-468. Conference proceedings.
- [11] Falkenauer, E. (1998) Genetic Algorithms and Grouping Problems, John Wiley & Sons, Chichester, UK Book. Fu, M. C. and B. K. Kaku, "Minimizing Work-in-Process and Material handling in the facilities Layout Problem," IIE Transactions, 29, 1, 29-36, 1997.
- [12] Fu, M. C. and B. K. Kaku, "Minimizing Work-in-Process and material Handling in the Facilities Layout Problem," Technical Report TR 95-41, University of Maryland, College Park, Institute for Systems Research, 1995. Foulds, L. R., "Techniques for Facilities Layout: Deciding which Pairs of Activities Should be Adjacent," Management Science, 29, 12, 1414-1426, 1983.

- [13] Garey M. R. and Johnson D. S.(1979) Computers and intractability-A Guide to the Theory of NP-Completeness, W.H. Freeman Co., San Francisco, USA Book.
- [14] Gu, L., Hennequin, S., Sava, A., & Xie, X.(2007). Assembly line balancing problem solved by estimation of distribution, Proceedings of the 3rd Annual IEEE conference on automation science and engineering scottsdale, AZ, USA.
- [15] Johnson, M. E. and M. L. Brandeau, "An Analytic Model for Design and Analysis of Single Vehicle Asynchronous Material Handling System," Transportation Science, 28, 4, 337-353, 1994.
- [16] Johnson, M. E. and M. L. Brandeau, "Stochastic Modeling for Automated Material Handling System Design and Control," Transportation Science, 30, 4, 330-350, 1996.
- [17] Johnson, M. E. and M. L. Brandeau, "An Analytic Model for Design of a Multivehicle Automated Guided Vehicle System," Management Science, 39, 12, 1477-1489, 1993.
- [18] Kouvelis, P. and A. S. Kiran, "The Plant Layout Problem in Automated Manufacturing System," Annals of Operations Research, 26397-412, 1990.
- [19] Kusiak A. and S. S. Heragu, "The Facility Layout Problem," European Journal of Operational Research, 27, 229-251, 1987.
- [20] Li, W. And J. M. Smith, Stochastic quadratic Assignment Problems in "Quadratic Assignment and Related Problems," Editors: P. Pardalos and H. Wolkowicz, American Mathematical Society, DIMACS Series in Discrete Mathematics, 221-236, 1994.
- [21] Little, J. D. C., "A Proof of the Queuing Formula L=1 W," Operations Research, 9, 383-387, 1961. Meller, R. And K. Y. Gau, "The Facility Layout Problem: Recent and Emerging Trends and Perspectives," Journal of Manufacturing Systems, 15, 5, 351-366, 1966.
- [22] Papadopoulos, H. T; Heavey, C. & Browne, J.(1993). "Queuing Theory in Manufacturing Systems Analysis and Design"; Chapman & Hall, ISBN 0412387204, London, UK
- [23] Pardalos, P. And H. Wolkowicz (Editors), Quadratic Assignment and Related Problems, American Mathematical Society, DIMACS Series in Discrete Mathematics, 221-236, 1994.
- [24] Thonemann, U. W. And M. L. Brandeau, "Designing a Single Vehicle Automated Guided Vehicle System with Multiple Load Capacity," Transportation Science, 30, 4, 330-350, 1996.
- [25] Ponnambalam, S. G., Aravindan, P. & Naidu, G.M. (1999). A Comparative evaluation of assembly line balancing heuristics. International journal of advanced manufacturing technology, Vol.15, No. 8 (July 1999), pp. (577-586), ISSN:0268-3768