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Abstract—the Uses spectral correlation of cyclostationary signals to reduce effect of noise & interference on desire 

signal. PSV filter exploits the cyclic frequencies of signal the more different cyclic frequencies the signals have, the more 

effective the filter will be. The stability criteria for two-dimensional (2-D) periodically shift variant (PSV) filters, 

represented instate space by the first model of FornasiniMarchesini (FM) with periodic coefficients is interesting 

challenge. GivoneRoesser Model is an extension for 2-D representation an algorithm with using linear matrix inequality 

is proposed to determine the stability of a given 2-D PSV system by sufficient conditions derived for stability analysis.  
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I. INTRODUCTION  

 

Two dimensional (2-D) PSV filters have applications in processing digital video with cyclo-stationary noise, and 2-D 

multirate filter banks. PSV filters are also important for designing 2-D filters with power-of-two coefficients. PSV stands 

for Periodically Shift Variant system (filter). As its name suggests, it is in between shift invariant & shift variant system. 

There are a number of ways to relax the time-invariance implicit in the assumption of stationarity - our research centers 

on the assumption of cyclostationary fields to describe a pulse train. Cyclostationary fields are fields whose field 

statistics are shift invariant with respect to a specific time shift. Hence, for a general 2D transfer function or transfer 

matrix it is desirable to obtain a state-space realization with as low order as possible. Note that by ―a general system‖ we 

mean that there is not any restriction on the coefficients in the transfer function or transfer matrix of the system. 

II. SYSTEM MODELING 

It is considerable that not like 1D one dimensional case, it is tough to get minimum state space realization in 2D state 

system with some exception along special categories. ‗A general system‘ implies no condition on boundaries on 

coefficient in transfer matrix of the system. 

Difference equation and state space representation is 

 

y ( i, j )=  𝑎𝑚𝑛(𝑖, 𝑗)𝑦(𝑖 − 𝑚, 𝑗 − 𝑛)𝑁−1
𝑛=0

𝑀−1
𝑚=0 + 

 

  𝑏𝑚𝑛(𝑖, 𝑗)𝑦(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 

 

Where (m, n) (0, 0) for amn. The coefficient are periodically shift variant with period P and Q. 

amn(i,j)=amn(i+P,j+P)=amn(i+P,j)=amn(i,j+Q) 

bmn(i,j)=bmn(i+P,j+P)=bmn(i+P,j)=bmn(i,j+Q) 

With help of Fornasini-Marchesini 1 model have been searched with attention for stability of 2D discrete system. The 

main research challenge is FM1 model of 2D system sufficient condition for asymptotic stability.  

Linear matrix inequalities is form of problem of system regarding system and control [19]. To solve the problem interior 

point methods have been applied. High dimensional matrixes can be sufficient for these algorithms like problem with 

large number of LMIs. This paper discuss to solve the LMI feasible issue which is used for sub gradient simplex based 

cutting plane method. By this method we can have feasible solution with repetitively cutting off the not feasible part of 

given polyhedron 

Main step for cutting plan methods is calculation of query point. Finding query point in three level process efficiently is 

done with sub gradient simplex based cutting plan. To obtain query point easily half way along sub gradient. 

A sphere inscribed in a corner or the Chebyshev center is calculated based on simplex tableaus to ensure the query points 

are deep inside. Redundant constraints can also be pruned based on simplex tableaus. Linear matrix inequality (LMI) 

techniques are powerful design tools in system and control areas. In linear system design and robust control analysis, a 

large number of design specifications and constraints can be formulated as LMIs, i.e., linear combinations of decision 

variables with constant matrix coefficients. A typical application is the system stability [20] problem to search for a 

common Lyapunov function over the intersection of a set of LMIs. For example, a robust control system is stable if a set 

of Lyapunov inequalities resulting from different assumptions are satisfied. For a switched system described by a family 

of linear time invariant Subsystems to be stable, these subsystems are desirable to share a common Lyapunov function. 
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III. LYAPUNOV STABILITY 

 

Lyapunov stability is named after AleksandrLyapunov, a Russian mathematician who published his book The General 

Problem of Stability of Motion in 1892. Lyapunov was the first to consider the modifications necessary in nonlinear 

systems to the linear theory of stability based on linearizing near a point of equilibrium. His work, initially published in 

Russian and then translated to French, received little attention for many years. Interest in it started suddenly during the 

Cold War (1953{1962) period when the so-called ―Second Method of Lyapunov‖ was found to be applicable to the 

stability of aerospace guidance systems which typically contain strong nonlinearities not treatable by other methods. A 

large number of publications appeared then and since in the control and systems literature. In control engineering, a state-

space representation is a mathematical model of a physical system as a set of input, output and state variables related by 

first-order differential equations. ―State space‖ refers to the space whose axes are the state variables. The state of the 

system can be represented as a vector within that space. 

 

IV. GIVONE-ROESSER MODEL 

 

The 2-D state-space theory was introduced by Roesser . Since then, several other works have appeared and so far the use 

of 2-D systems do not cease to increase. Based on these works, several properties concerning 2-D systems such as 

controllability, observability and realization have been investigated. This paper concentrates on stabilization of 2-D 

systems. In fact, the stability of 2-D systems using the 2-D Lyapunov equation has already been studied in, while the 

state and output feedback stabilization problem is treated in, by solving a set of 2-D polynomial equations. Further, most 

of the available works in the literature of 2-D systems consider only state-feedback stabilization, or dynamic output-

feedback control. However, state-feedback controllers require the measurement of every state, some of which may be 

difficult to measure. On the other hand, dynamic output-feedback controllers (which include systems with state 

observers) result in high order controllers which may not be practical in real applications. Instead, the static output-

feedback controllers are less expensive to implement and more reliable so they will be studied in this paper. In 2-D 

systems area, static output-feedback stabilization problem is not fully 

 

 
Fig 1 

 

FM-2 system 

 

The main issues in the design of any control system are stability analysis and stabilization. With the introduction of state-

space models of 2-D discrete systems, various Lyapunov equations have emerged as powerful tools for the stability 

analysis and stabilization of 2-D discrete systems. Lyapunov based sufficient conditions for the stability of 2-D discrete 

systems have been studied. When the dynamics of practical systems are represented using state-space models, errors are 

inevitable as the actual system parameters would be different than the estimated system parameters, i.e., the model 

parameters. The cause of errors are the approximations made during the process modeling, differences in presumed and 

actual process operating points, change in operating conditions, system aging etc. Control designs based on these models, 

therefore, may not perform adequately when applied to the actual industrial process and may lead to instability and poor 

performances. This has motivated the study of robust control for the uncertain 2-D discrete systems. The aim of robust 

control is to stabilize the system under all admissible parameter uncertainties arising due to the errors around the nominal 

system. Many significant results on the solvability of robust control problem for the uncertain 2-D discrete systems have 

been proposed in. 

 

Consider the 2-d periodically shift variant system (zero I / p) described by FM-2 model: 

x(k+1,l+1)=(A1+OA1)+x(k,l+1)+(A2+OA2)+x(k+1,1) Sufficient condition for LSIV 2-d FM-2 

 
𝑝1 0
0 𝑝2

  – A
T 

(P1+P2) A>0 
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Checkingstability of various derived theorem taking example of LSIV 2D attasi model filter 

 

A linear 2-D PSV system represented by the first model of FM-1 is given as  

X(h+1,k+1) = 𝐴1(h,k)X(h,k+1) + 𝐴2(h,k)X(h+1,k+1) +𝐴0(h,k) X(h,k) + B(h,k)U(h,k) 

Y (h, k) = C (h, k) X (h, k)... 

Where a state vector x (h,k)𝜖R
L*l

an input u(h, k), and an output y (h, k)are scalar, state matrices and vectors 𝐴0(h, k), 𝐴1, 

(h, k) 𝐴2(h, k)  אRL×1, B(h, k) אRL×1 and C(h, k)  אRL×1 are periodically shift variant with period (P, Q) where P and Q 

are positive integers, not both zero, i.e. 𝐴0(h, k) = 𝐴3(h+P, k) = 𝐴3(h, k+Q). 

Similarly for FM2 models with coefficient of only 𝐴1 𝑎𝑛𝑑 𝐴2 and their example with matrix form also with stability 

criteria is discuss further 

LSIV 2-D Attasi's model filter using circulant matrices as following 

 

𝐴1= 

0.5 −0.5
−0.125 0.5

      0.125 −0.125
     −0.5 0.125

0.125 −0.125
−0.5 0.125

0.5 −0.5
−0.125 0.5

  

 

𝐴2= 

0.5 0
   0.25        0.5

     −0.015 0.25
     0 −0.015

−0.015    0.25
0 −0.015

0.5 0
0.25 0.5

  

 

B= [1  0.39  -1  0.45] 

𝐶 =  1 −1 −1 1  

Where A0=A1 A2. 

Our derived purposed theorem 1 

 

−𝑃 𝑃𝐴 0 𝑃𝐻
𝐴𝑇𝑃 −𝑄 𝜀𝐸𝑇 0

0
𝐻𝑇𝑃

𝜀𝐸
0

−𝜀𝐼
0

0
−𝜀𝐼

 < 0 

Where A=  𝐴1 𝐴2  
Detail show above is related to FM1 and now consider the 

For above matrices A0 A1 A2 has been satisfies using Matlab LMI toolbox hence the system is stable is proved, as we 

considered stable systems the condition is satisfying both side so we can say theorem is worked properly. 

Following 2-D discrete system represented by FM second model 

1 2

1 2

( 1, 1) ( , 1) ( 1, )

( , 1) ( 1, )

x i j A x i j A x i j

B u i j B u i j

     

   
 

( , ) ( , ) ( , )z i j Cx i j Du i j  0, 0i j    

 

Following results are proposed by us for stability conditions of a 2-D PSV system represented by FM-2 model. Same has 

been verified by numerical example also. The first results can be stated as follows. A 2-D PSV System represented by 

FM-2 model is globally asymptotically stable provided there exist n* n positive definite symmetric matrices  1P  and 2P

and positive scalars ε such that, for A=[ 1A 2A ],  

H=[ 1H 2H  ], E= 1 2E E  
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0

 
 
  
 
 
 

T T

T

-P PA 0 PH

A P -Q εE 0

0 εE -εI 0

H P 0 0 -εI

 

 

Where                            


1 2

1 2

P = P + P

Q = P P
 

 

The second result can be stated as follows. 2-D PSV System represented by  FM-2 model is globally asymptotically 

stable provided there exist n x n  positive definite symmetric matrices  P1, P2 and positive scalars ε1, ε2 such that 

 

 
 
 
 
 
 
 
 

T T

1 1 1 1 1 1 2

T T

2 2 2 2 2

1 2

T

1 1

T

2 2

P - ε E E 0 A P PH PH

0 P - ε E E A P 0 0

> 0PA PA P 0 0

H P 0 0 ε I 0

H P 0 0 0 ε I

 

Where 1 2P = P + P  

 

For above matrices A1 A2 has been satisfies using mat lab LMI toolbox hence the system is stable is proved, as we 

considered stable systems the condition is satisfying both side so we can say theorem is worked properly. 

Zero-input stability of a GR state-space model is studied so that only the periodic coefficient 

matrices𝐴1(𝑖, 𝑗),𝐴2(𝑖, 𝑗),𝐴2(𝑖, 𝑗),𝐴4 𝑖, 𝑗  need to be considered. A zero-input 2-D PSV GR model can be written as 

 

 
𝑥ℎ  (𝑖 + 1, 𝑗)
𝑥𝑣  (𝑖, 𝑗 + 1)

     =  
𝐴1(𝑖, 𝑗) 𝐴2(𝑖, 𝑗)

𝐴3(𝑖, 𝑗) 𝐴4 𝑖, 𝑗 
  

𝑥ℎ  (𝑖, 𝑗)
𝑥𝑣  (𝑖, 𝑗)

  

𝑤 𝑖, 𝑗 =  
𝑥ℎ  (𝑖, 𝑗)
𝑥𝑣  (𝑖, 𝑗)

  

Then the above can be modified as  

 

𝑤 𝑖, 𝑗 = 𝐴10 𝑖 − 1, 𝑗 𝑤 𝑖 − 1, 𝑗 + 𝐴01 𝑖, 𝑗 − 1 𝑤(𝑖, 𝑗 − 1) 

 

A10 i, j =  
𝐴1(𝑖, 𝑗) 𝐴2(𝑖, 𝑗)

𝑂 𝑂
  

 

A01 i, j =  
𝑂 𝑂

𝐴3(𝑖, 𝑗) 𝐴4(𝑖, 𝑗)
  

 

2-D PSV System represented by GR model is globally asymptotically stable provided there exist n×n positive definite 

symmetric matrices P1,P2 and positive k1,k2,k3,k4 such that S>0 

 

 

Using above attasi model circulant matrix and converting it in to GR model matrix we have checked stability criteria for 

both equations hence we can say derived criteria gives bestresults 

 

Conclusion: After taking examples of attasi model filter with circular matrix as a PSV system coefficient for checking 

our derived criteria for stability, it is successfully gives stable result for all the theorems but for GR modelfirst and GR 

model second theorem gives best result compare to FM1 and FM2 stability criteria 
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V. CONCLUSION 

 

A review on the stability of 2-D discrete systems described by FM second model has been presented in this paper. 

Example of cyclostationary signal is processing with PSV system and FM, GR models necessary and sufficient condition 

verified. Among the three model the FM2 and GR is most appropriate model for system stability and reliability of system 

For the future scope the different type of system can be characterize using the FM1,FM2 and GR model for get the 

stability analysis. 
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