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Abstract — Mobile malware found these days are distributed for financial gain. Most of those malware are created and
used as a malware variant that re-uses existing malicious behavior, because the financial objective can be achieved
efficiently at low cost, compared with creating new malware. Another reason is that mobile malware with a short life
cycle can be created massively to spread infection. However, anti-malware solutions available these days detect malware
using the known signature of malware. Therefore, those solutions have a limit in detecting a malware variant that
modifies existing malware partially. If many malware variants can be detected quickly, infection spread can be blocked
in early stages and damages can be reduced. This paper proposes a clustering classification technique based on the
unsupervised machine learning algorithm, which is designed to detect malware variants quickly that seek financial gain.
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1. INTRODUCTION

The Android-based smart phones is truly a representative device that occupies more than a 90% market share in
the world. As the number of Android-based smart phone users increases, various contents and services are provided [1],
which means that attackers can achieve their financial purposes easier. As a result, various Android-based malware is
diffused. Kaspersky Lab announced that they detected more than 8.5 million malware in 2016 alone, which is an increase
of 3 times over the last year. Some malware is newly created and diffused among those every-increasing malware.
However, many malware reuses the existing code. Those malware variants modify existing malware partially and
redistribute it after repackaging. According to TrendMicro, about 80% of top 50 applications registered in Google Play
with various categories are actually variants [3][4].

Many malware variants are created and diffused to resolve the problem of a short life cycle and infect many
smart phones. The life cycle of the malware is significantly shorter than that of the PC due to the App market policy and
various anti-malware solutions. As a result, efficiency deteriorates even though a high-level attack techniques is applied.
Therefore, attackers modify the code partially and reuse it to produce in large quantities and avoid detection by the
signature-based anti-malware solution. Many similar malware is created and distributed using this method.

However, we have no choice but to analyze all Apps statically and dynamically, in order to respond to those
malware. It causes unnecessary costs because only some of malicious behavior codes are modified in the malware
variant. We can reduce costs and respond to malware faster as well, if we can determine malware quickly.

This paper accordingly proposes a clustering classification technique based on machine learning to detect
malware variants. The proposing technique enables us to determine and respond to malware variants quickly.

1. RELATED WORKS
In this section, we describe the existing research related to proposed method simply.

2.1. Machine Learning

The concept of “machine learning” appeared first in the paper written by the professor Arthur Samuel, Sandford
University in 1959. Machine learning is defined as “enabling the computer to learn by itself without programming” [5].
There was no significant progress in machine learning for a while due to a limit in computing capabilities, and research
started in earnest since the 1980°s. Machine learning has been used in various industries and various learning and
application models are created these days, based on the machine learning technology and big data.

Depending on the type of feature information, machine learning can be divided into supervised, unsupervised, and
reinforced type [6].

2.2. K-means Algorithm

The concept of the K-Mean algorithm was first introduced by Hugo Steinhaus in 1957, and the standard algorithm used
now was devised by Stuart Lloyd in 1957, It was not until 1982 that the algorithm was released first in the science
magazine.

K-Means clustering is one of the unsupervised learning algorithm, which classifies data into k groups based on the level
of similarity. This algorithm is useful when classifying among the data set[7].
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1. PROPOSED METHOD

The variant malware detection technique proposed in this paper detects malware by grouping them into 11 types
using the K-Means algorithm. The following figure shows the basic flow of this technique.
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Figure 1. Basic Flow of Proposed Method
3.1. Types of mobile malware
11 malware types were classified by analyzing the attack pattern of malware designed for financial gain and the
following table shows the classification items.

Table 1. Types of Mobile Malware for Clustering

Category Definition

bankunl

bankun2 Stealing financial information by making the same screen with the general bank App.
bankun3

hello_jni Stealing financial information when the user runs the bank App, by hiding the leak site in the SO
hello_jni b | library.

pdex Conducting malicious behavior by executing the p.dex file under the assets folder.
Conducting malicious behavior by referring to the libshella.so, libshellx.so file under the lib
shella folder.

Running the executable OAT file that can be executed in the ART machine in the so file
Including /soapi/ in the leak site address and conducting malicious behavior after receiving a
remote control command from the SMS message.

XXXXX Conducting malicious behavior by installing the xxxxx.apk file under the assets folder.
Pretending to be a courier App that contains xxxxx.view in the class name.

The leak site address is changed if the SMS message beginning with a string like “sorry!!” is

soapi

view received.
Preventing App uninstallation by popping up a warning message, if the device manager right is
revoked.
If the string /kbs/ is included in the leak site address and the user executes the bank App, an
kbs update message appears that prompts the user to uninstall the existing bank App, and download,

install, and execute the false bank App.

3.2. Second-order headings

The feature information should be extracted and used selectively for unsupervised machine learning. Accuracy is not
increased even though all feature information is used. It is important to select major characteristics that can classify the
type well. This paper selects 181 APIs and string that are actually used frequently, using malware samples that can be
classified into 11 types. The following steps are taken for classification.
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1. Choose Malicious Behavior Investigating the APl and String that are related to
& Related API i malicious behavior such as network and file access.

Inserting a log into the framework to check the actual use of

2. Modify Framework the API selected in No. 1 and extract frequently-used APls
Executing malicious APK and recording logs to check

3. Dynamic Analysis the actual use of the API selected in No. 1.

. ) Collecting the API and string used in malicious API,

4. Static Analysis besides the one selected in No. 1.
Using the API that is actually used in No. 3 and API

5. Feature Selection and string collected in No. 4 as characteristics.

Figure 2. Processes of Feature Selection

A total of 141 APIs and 40 strings were extracted after the above five steps, and the following figure shows some of
them.
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Figure 3. Sample of Features

3.3. K-means based unsupervised learning
K-Means learning was conducted using 181 APIs and strings that had been extracted from 11 malware types and
features, as analyzed before. As K-Means requires the cluster k value to group the entered data, 11 malware types
analyzed before were set as the k value. Then, classification was conducted using 181 feature information. Classification
passes through four steps as described below.

1) First, change the feature information of each App to the data with a coordinate value and display the feature
information of all Apps on one coordinate system. Then, select a central point randomly as many as the number
of clusters (k) and display it on the coordinate system. In this time, the displayed central point of the cluster is
not accurate as it is displayed randomly, and the central point moves as operation continues.

2) Create a cluster by grouping data near the central point of each cluster.

3) Calculate the mean value of the data belonging to each cluster and move the central point of each cluster to
the location of the calculated mean value.

4) Create a cluster by grouping the data again based on the moved central point. Repeat the above steps 2 ~ 3
times. Clustering is completed if the central point of each cluster doesn’t move.
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1) Change the feature value of each App to the coordinate 2) Create a cluster of the data
data. Select as many central point as the number of located near each cen-tral point.

clusters (k) randomly. In the above case, k=3,
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3) Adjust the central point us-ing 4} Repeat the step 2) and 3) until
the mean value of sach cluster, the central point is not changed
anymaore,

Figure 4. Processes of K-means Clustering

When the clustering process described above is completed, a total of 11 clusters will be created. If a new App is added
after the clustering process is completed, 181 features included in the App will be extracted and displayed on the
coordinate system. As a result, it can be checked to which cluster the new App belongs Afterwards, move the central
point by repeating the clustering process and readjust by creating a new cluster.

3.4. Detection of mobile malware variants

When the clustering process is finished, the entered App comes to have a distance value from the central point in the
cluster. The pertinent distance value is calculated according to the location displayed on the coordinate system, based 181
features. If the similar type APl and string are used, the similar distance value will be obtained. In the end, there is a high
possibility that Apps located close to a specific App is the variant of that App.

Therefore, calculate a distance value among each App and select N App that are close using the distance value, and
classify it as a variant, in order to detect a malware variant finally. In this time, N indicates the threshold value.

V. IMPLEMENTS
To verify the classification accuracy of the proposing technique, a technique is implemented that uses Python
language on the Ubuntu 14.04 LTS OS. A total of 925 malware with 11 types was used for the test and the following

table shows the number of malware by type.

Table 2. Amounts of Mobile Malware

Category Amount Category Amount
bankunl 65 pdex 28
bankun2 136 shella 15
bankun3 34 soapi 62
hello_jni 226 XXXXX 31
hello_jni_b 13 kbs 55
view 260

Malware used for the test has been already distributed and determined as malware, and the number of each
malware is different because the distribution and collection case varies depending on the malware type.

For the test, a total of 925 malware was analyzed statically/dynamically to extract the API and string, and 118
APIs and strings were arranged that are used as a feature. If there is a feature used in malware, 1 will be saved.
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Otherwise, 0 will be saved. A comma (“,”) is used as a separator. The following figure shows how the feature information
is saved.

af_mds af_features

00b09835092be02ad0fdocad4da9 7aef 1.1.0.1.0.1.1.1.1.0.1.1,1.0.1.0.0.0.0.0.0.0.1.1.0.1.1.1,1.0.0.0.1.0.0.0.0.0.0,1.1.0,1.0.0. 1.0.0...
Q0DE2CSFABOSSCADARAZ20957704FFFSF  1.1.0.1.0.1,1,1.1,0,1,1,1,0,1.0,0,0.0,0,0,0,1.1.0,1.1,1,1,0,0,0,1.0,0.0.0.0.0,1,1,0,1.0,0.1.0.0...,
01BFOEDEATFEDS5750B225732FCBOEYY - 1.1.0,1.0,1,1,1.1,0, 1.1, 1,0,1,0,0,0.0,0,0,0,1.1.0,1.1,1, 10,0, 1,1.0,0.0.0.0.0,1,1,0,1.0,0. 1.0.0...,
0b728a757082222170a7f Tdc ol 2a4a2 1.1.0.1.0.1.1.1,1.0,1.1,1,0,1,0,0,0.0.0.0.0,1.1,0,1.1,1,1,0,0.0,1.0.0.0.0.0.0,1,1,0,1.0.0.1.0.0...
1B0BE 139FEFDAFB24CCA9%6CC13ABA3E  1.1.0,1,0.1,1.1.1.0.1,1,1,0,1,0,0,0,0,0.0,0,1,1.0. 1,1, 1,1,0.0,1.1,0.0,0,0,0,0,1.1,0, 10,0, 1.0.0..,
1c340debeddd0ed0c 78 1065561832335 1.1.0.1.0.1.1.1,1.0.1.1,1.0.1,0.0.0.0.0.0.0,1.1.0,1.1,1,1.0.0.0.1.0.0.0.0.0.0,1,1.0,1.0.0.1.0.0..,
1CBE45103919416061578A31ED4D15DF  1,1.0.1.0.1.1.1.1.0.1,1,1.0,1.0.0,0.0.0.0.0,1,1.0.1,1,1,1.0.0.0, 1.0.0.0.0,0.0,1.1.0, 1.0.0.1.0.0..,
1D156A09990855F5A67D54036C6 14004 1.1.0.1.0.1.1.1.1,0.1,1.1.0.1.0,0.0.0.0.0,0.1.1.0.1,1,1,1.0.0,0.1.0.0.0,0.0.0.1,1.0.1.0.0.1.0.0...
1DDFIEGFFAES4502E4A2A83CF4EFSFFF - 1.1.0.1.0.1.1.1.1.0.1.1.1.0.1.0.0,0.0.0.0.0.1.1.0.1.1.1,1.0.0.1.1.0.0.0.0.0.0.1.1.0,.1.0.0.1.0.0...
1F659DCCE59E23CFBRDEC41700550706  1.1.0.1.0.1.1.1.1.0.1.1.1.0.1.0.0.0.0.0.0.0.1.1.0.1.1.1.1.0.0.1.1.0.0.0.0.0.0.1.1.0,.1.0.0.1.0.0...

I

Figure 5. Sample of Feature Information

The result of clustering that is classified by entering the arranged data into the implemented system has shown a
high level of classification accuracy mostly. The following table shows the result of malware classification in each

cluster.
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Figure 6. Result of Malware Classification in each Cluster
Table 3. Result of Cluster 0~10(C0~C11)

Category Co C1 c2 C3 C4 C5 C6 c7 C8 C9 C10
bankunl - - - - 65 - - - - - -
bankun2 - - 136 - - - - - - - -
bankun3 - - - - - 3 12 19 - - -
hello_jni - 226 - - - - - - - - -
hello_jni_b - - - - - - - - - 13 -
view 260 - - - - - - - - - -
pdex - - - - 1 - - - 27 - -
shella - - - - - 15 - - - - -
soapi - - - 62 - - - - - - -
XXXXX - - - - - - 1 - - - 30
kbs - - - - - - 55 - - - -

@IJAERD-2018, All rights Reserved 907




International Journal of Advance Engineering and Research Development (IJAERD)
Volume 5, Issue 01, January-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

As clustering is simple grouping, there is no information about the type of each cluster. However, we can
classify the type of the pertinent cluster using the type of the App included in each cluster. When we review the malware
type of each cluster, we can see that the same type malware actually belongs to the same cluster.

However, bankun3 type malware is grouped up to 56% and grouped in three clusters. The reason is that the type
of the API available in the Android environment is limited, and the API/string used for malicious behavior can be used
by many malware at the same time. Even so, we can see that most of the same type is grouped in cluster?.

Some malware grouped in the same cluster is as follows.

|Cluster_7 '0.69425820833016216 SE27EG4ACT 22072 Ar*wxnxx ARRAIRAAIRAGIR bankun3
|Cluster_7 "0.69425820833016216 FAQA306FBI75006Q74*raxaraxansssnsssnss bankun3
|Cluster_7 '0.69425820833016216 DESFIDDI2C22AA4A R ARrsnsRansssntnans bankun3
%(’Iu-.lm 7 '0.69425820833016216 0S4F85ET16CT1675D*#AaRaxaxaanaxarssas bankun3
|Cluster_7 '0,86322207720298849 A21440AATBAS1119*#%# bankun3
E(luster_l '0.86322207720298849 CB60254CC0088CO5%*** bankun3
|Cluster_7 '0.86322207720298849 870916D6143E005FE bankun3
E(‘lu"tc-r 7 '0.86322207720298849 6216CBDCERGTIDEROG  *ensssssnsssnsssnsss bankun3
%Cl\.lﬁtcr_? '0,92217976147027203 F2DDFO3172BEGT743**rxaaxanaxanaxanaxs bankun3
|Cluster_7 '0.92217976147027203 77BO8936CIBAFOEG##ananananinanananana bankun3
|Cluster_7 ".0552598766191281 ABG3CCBTDADEE244##rsnsntaanintatianie bankun3
Cluster_7 ".0552598766191281 3211780347 IfGcccfhyr arasanasandsanssiass bankun3
|Cluster_7 "1.0799097120359586 4B520CDB4ECT00B7**** bankun3
;(_Iusler_/ ".0799097120359586 FCBACS5F4B2CB5CAG A4 bankun3
|Cluster 7 "1.1955596517474245 140bB3664 16267 achrrrrrrsssssssssassias bankun3
|Cluster_7 ".8375884473785382 GFCO090AET128F 3 QG****axnxasansxstasass bankun3
|Cluster_7 "1.8375884473785382 09A0ATDEOE7B3E] 37x#aaxusaxusaxusaxnsss bankun3
|Cluster_7 "1.0352396116684509 33C4A2DBOSIE28DA4Asastattatantadnatas bankun3
|Cluster_7 "1.9352396116684509 TAC30F22F5F85E 1 7O A AsARAsARARARARAR bankun3

Figure 7. Sample of Malwares in a Cluster

The first column is the cluster type and the second column is the cluster distance value. The third column is the
hash value of malware and the fourth column is the type of malware.
Classify the App by calculating the difference in the distance value to detect a malware variant.

V. CONCLUSION

As Android-based smart phone users increase sharply, Android malware targeting those smart phones also
increases significantly. Many solutions were released to respond to such an increase in malware, most of them compare
the hash data of malware only. However, more than 80% of malware all over the world is a variant that cannot be
detected by simple hash data comparison. Therefore, this paper proposed a technique to detect and classify malware
variants quickly using K-Means clustering.

Variants can be quickly detected that cannot be detected using the hash data, by classifying and detecting
malware variants using the proposed technique. Eventually, the technique will reduce damages caused by malware
drastically.
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