
International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue, Volume 1,Issue 4, April 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 1

Reducing Computational Time in Ray Tracing

Darshit Patoliya1,Bhargav Ghodasara2, Vatsal Shah3
1
Information and Technology Department, BVM Engineering College, darshit7@gmail.com

2
Information and Technology Department, BVM Engineering College,b.ghodasara1994@gmail.com

3
Assist. Prof., Information and Technology Department, BVM Engg. College,

vatsal.shah@bvmengineering.ac.in

Abstract—Many computer graphics rendering algorithms use ray tracing to generate realistic and
high quality image. It is a method to convert 3D images in to the high quality 2D realistic image. In

original ray tracing algorithm we need millions of rays to produce the render image, by calculating
intersection of ray with image plane and characteristic of surface, color of pixel is determined. So

this process is time consuming and complex. In this paper we study some algorithms which reduce
the computational time of ray tracing.

Keywords- Ray Tracing, kd-tree, Spatial Median Method

I. INTRODUCTION

Everyone in the field of the computer graphics is familiar with the ray tracing algorithm.
Because of the simplicity of the algorithm it is easy to implement and understand it. Ray tracing

algorithm is discrete sampling of visibility, carried out by a ray shooting algorithm. Huge number of

ray shooting queries (are performed in order to compute one image of a commonly used

resolution such as 640*480[1]. The more compatible ray tracing algorithm was first introduced by
Whitted in 1979[2].

Ray tracing is basically a technique in which image is generated by path of the light passing

through pixel in image plane. Ray tracing technique generates image with high power of quality at
very high computational cost. So where time is critical than quality of image, ray tracing algorithm is

used to render image such as Television, animated films and video games.

Figure 1.Image of sphere is createdon image plane by ray tracing rays [3]

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue, Volume 1,Issue 4, April 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 2

In ray tracing basically all rays are tested for intersection with some subset of all models in
the scene. When nearest object is identified in the scene based on the properties of the object, color

of pixel determined. Lot of research has been done for the last couple of decades in order to increase
the performance of the ray tracing algorithm. Making interactive images in many applications such
as video games is more significant than its accuracy and quality. Ray tracing needs traversing whole

image, so choosing an effective algorithm is the key factor to improve computation time in ray
tracing. There are many method proposed such as kd-tree, SAH, BVH [4]. But one method which

received lot of attention from researchers is kd-tree, because of its good spatial adaptability and high
efficiency.

1.1 Spatial Media Method

Kd-tree is binary acceleration method in which plane is divided into two recursive parts. This

division includes two cut planes on Cartesian axes. Spatial method simply makes faster traversing of
kd-tree. See [5] recursive kd-tree algorithm introduce by Wald and Havran.

 Algorithm: recursive kd-tree construction

function Partition(triangles T, voxel V) return node
 if Terminate(T,V) then

 return new leaf node(T)
 p=FindPlane(T;V) /*find a plane p to split V*/
 (VL,VR)=Split V with p

 TL={tϵ T | (t∩ VL) ≠ᴓ }

 TR={t ϵ T | (t ∩VR) ≠ᴓ }
 return new node(p, Partition (TL;VL), Partition(TR;VR))

 function BuildKDTREE(triangles[] T) returns root node
 V = AABB(T) /* start with the scene*/

 return Build(T;V)

II. PRIVIOUS INRODUCED METHOS

There are many methods introduced for reducing the ray tracing time. See [3] by Ali and

Shahin for some of the method described here based on the pixel.

2.1 Pixel Differential Method

In this method number of traced ray are decreased by using the differential relationship of

pixel. The problem with conventional ray tracing technique is complex computation. The most of the
render time is used to find out intersection of ray and objects in scene. So if we want to increase the
speed of algorithm, intersection point should be decreased. Another method is reducing the number

of rays where, the rays reduced are more compared to conventional method. Pixel of odd rows are
computed as ray tracing method but even rows pixel are derived from the average of the upper and

lower rows pixel color.
If the difference of upper and lower pixel color is small then, it is derived by taking their

average, but if difference is greater, ray tracing technique is used. If we have 28 values for red, green

and blue (RGB images), then color difference should be minimum 0 and maximum 256. Let K be a
parameter as a difference of color between upper and lower rows. If K is close to zero then time

consume is less than the ray tracing method. Therefore created image have high quality. Otherwise if

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue, Volume 1,Issue 4, April 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 3

K is close to the 256 then averaging method can be implemented more than ray tracing method. So
the image quality will be very low.

Algorithm 2: Pixel Differential Method [3]

Procedure Render()

{
FOR(each pixel in row)

{
If(row is odd)

ColorPixel = RayTrace(ray)

//Send ray from origin through pixel , trace ray and intersect with scene
Else if (row is even)

{
If(|ColorPixel.up – ColorPixel.down| < K)

ColorPixel=(ColorPixel.up – ColorPixel.down)/2

Else
ColorPixel =RayTrace(ray)

//Send ray from origin through pixel , trace ray and intersect with scene
}

Show(colorpixel) //show pixels from image plane

}
 }

2.1 Pixel Averaging Method

This method combines both ray tracing and average of nearer pixels. So time is shorter than

ray tracing method but quality of image is quite low. This algorithm is used when fast rendering is
required but quality of image is reasonable. In this technique couples of rows are calculated through

ray tracing method and row other than that is calculated using average method. Algorithm stores
values of first two rows in two dimensional arrays. Third row is obtained by averaging two rows of
the previous calculation.

Algorithm 3: Pixel Averaging Method [3]

Procedure Render()

{
FOR(each pixel in scene)
{

If(row is even)
ColorPixel = RayTrace(ray)

//Send ray from origin through pixel , trace ray and intersect with scene
Else if (row is odd)
{

If((ColorPixel.up – ColorPixel.down) < K)
ColorPixel=((ColorPixel.up – ColorPixel.down)/2 &&(

arr[row-2][rgb]+arr[row-1][rgb])/2)

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue, Volume 1,Issue 4, April 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 4

Else

ColorPixel =RayTrace(ray)
//Send ray from origin through pixel , trace ray and intersect with scene

}
Show(colorpixel) //show pixels from image plane

}
}

III. PROPOSED METHOD

3.1 Advanced Pixel Averaging Method

In previous pixel differential method we calculate the difference of upper and lower pixel if
difference is less than K then color of pixel is determined by those values and if value of K is near to
256 then ray tracing method is used to determine the color of pixel for each odd row. But in even

row for each pixel we have to use ray tracing. In this method we introduce some technique to avoid
using ray tracing for each pixel in even row. For even row first we calculate each and every even

pixel using ray tracing and for determining the color of the odd pixel we use the difference of left
and right pixel. This method increases the speed of algorithm but image quality is going to be low.
So when rendering time is critical than quality of image then this method is used. For example video

game.
After calculating every even pixel in even row using ray tracing for odd pixel we check the

difference of left and right pixel. If difference K is near to 0 then using pixel differential method
color of pixel determined but if K is near to 256 then color of the pixel determined by the ray tracing
algorithm.

Algorithm 4: Advanced Pixel Differential Method

Procedure Render()
{

For (each even row)

{
For(each even pixel)

ColorPixel[row][PixelNumber]=RayTrace(ray)
 }

FOR (each pixel in row)

{
If (row is even)

{
If (Pixel is odd)
{

If((ColorPixel[row][PixelNumber-1]-
ColorPixel[row][Pixelnumber])<K)

 {

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue, Volume 1,Issue 4, April 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 5

ColorPixel=(ColorPixel[row][PixelNumber-1]-

ColorPixel[row][Pixelnumber])/2
 }

}
}

Else if (row is odd)
{

If((ColorPixel.up – ColorPixel.down) < K)
ColorPixel=(ColorPixel.up – ColorPixel.down)/2

Else

ColorPixel =RayTrace(ray)
//Send ray from origin through pixel , trace ray and intersect with scene

}
Show(colorpixel) //show pixels from image plane

 }

A main advantage of this algorithm is less time complexity compared to ray tracing algorithm
but at a high risk of the image quality.

IV. CONCLUSION

Ray tracing algorithm has a high computational cost, we reduce the cost of computation by
decreasing the number of ray. In pixel averaging and differential method we calculate color of some

pixel using ray tracing and for rest of the pixel color is determined by the difference of the
neighboring pixel. In advance pixel averaging method, odd row even pixel is calculated using ray
tracing and odd row odd pixel is calculated by average of left and right pixel.

REFERENCE

[1] V.Havran and J.Bittner, “On improving kdtree for any shouting”, the

WSSCG’2002 Conference, pages 209-216, 2002.

[2] Whitted T., “An improved illumination model for shaded display”. Proceeding of the 6
th

 annual conference on

Computer graphics and interactive techniques 1979.

[3] Ali Asghar, Shahin Pourbahrami, “Reducing Render Time In Ray Tracing By Pixel Averaging”, “International

Journal of Computer Graphics & Animat ion”, Vol.2, No: 4, October 2012.

[4] A Glassner, “An Introduction to Ray Tracing”, San Francisco, USA: Mogran Kaufmann, 1989.

[5] I. Wald and V. Harvran, ”On building fast kd-tree for tracing, and on doing that in O(N log N)”, In

proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing, Sept. 2006

.

