

International Journal of Advance Engineering and Research Development

Enhancement of wear resistance of Mild steel with the application of Thermal Spray Coatings of WC-10Co-4Cr

Vipin Tyagi¹, Sachin Handuja²

¹M.Tech Scholar, AIMT, Gorgarh, Indri, Karnal, Haryana, India, vipintyagi 359@gmail.com ²Assistant Professor Mech. Deptt., AIMT, Gorgarh, Indri, Karnal, Haryana, India, handujasachin 97@gmail.com

Abstract-In the present paper, it has been proposed to find out the wear resistance of D-Gun coated MS. The specimens are coated with WC-10Co-4Cr on the steel substrates. The coating was characterized by the SEM/EDS analysis. Subsequently the wear behaviour of the uncoated, WC-10Co-4Cr coated MS was investigated according to ASTM Standard G99-03 on a Pin-on-Disc Wear Test Rig. Cumulative wear rate, cumulative wear volume loss were calculated for the coated, as well as, the uncoated specimens for 30N, 50N and 70N normal loads. SEM/EDS analysis of the worn surfaces was carried out at IIT, Ropar.

The as-sprayed coatings exhibited typical splat morphology. It has been concluded that the thermal sprayed WC-10Co-4Cr coating can be very useful to minimize the wear problem of substrate steel plates. The coatings were found to be adherent to the substrate steel after the wear tests.

Keywords: MS, Sliding wear, D-Gun, SEM, thermal spray coating.

I. INTRODUCTION

Durability and longevity of the materials is priceless for any nation. All types of industrial set ups irrespective of whether being in Manufacturing construction, assembly or service sector have drawn their reputation from the durability and reliability of their products. Degradation of material by wear cost a very high loss whether it is of reputation or economic loss to all the countries (Steffens & Nassenstein, 1993). The economic losses due to friction and wear amount to about 1 to 2.5% of the gross national product (Gahr, 1987). Studies on wear failures have shown that the wear of materials costs the U.S. economy about \$20 billion per year (in 1978 dollars) (Surface Engineering for corrosion and wear resistance, ASM International). 40% of total US steel production is being utilized for the replacement of wastage due to wear and corroded parts and products used in manufacturing industry.

When two surfaces rub against each other, wear occurs. Individuals and industry tend to focus on the wearing surface that has the greatest impact on their own economic situation. Surface engineering is an economic method for the production of materials, tools and machine parts with required surface properties, such as wear resistance. The wear process of rollers is integrally affected by various factors, such as abrasive wear, oxidation wear, cracking by thermal fatigue and heat impact, fatigue wear and sticking of rolled material onto the roller surface. Wear also involves microscopic and dynamic processes occurring at interfaces between the roller and the rolled material almost impossible to observe directly (Gu"lenc & Kahraman, 2003).

1.1 Methods to Reduce Wear Resistance

Although wear cannot be eliminated completely, yet it can be reduced to some extent by different wear prevention methodologies. Few of such methods are stated below (Srivastava, 2001):

- Better Material
- Lubrication
- Contact pressure
- > Temperature
- > Environment
- > Maintenance
- ➢ Coatings

Based upon the above techniques to reduce the wear problems, coating is best preventive method.

1.2 Coating

A coating can be defined as a layer of material, formed naturally or synthetically or deposited artificially on the surface of an object made of another material, with an aim of obtaining required technical or decorative properties (Burakowski and Wierzchon, 1999). If a material is added or deposited onto the surface of another material (or the same material), it is known as a coating. Coatings are frequently applied to the surface of materials to serve one or more of the following purposes (Stokes, 2003):

- To protect the surface from the environment that may produce corrosion or other deteriorative reactions such as wear.
- > To improve the surface's appearance.

1.3 Thermal Spray Coatings

Thermal spraying was first discovered and used in the beginning of last century and research in this field progressed ever since. The recognized beginning of Thermal Spraying is believed to be in 1911 in a flame spray process that was developed by Dr. Max Schoop from Switzerland. Other major thermal spray processes include wire spraying detonation gun deposition (invented by R.M. Poorman, H.P. Sargent, and H. Lamprey and patented in 1955), plasma spray (invented by R. M. Gage, O. H. Nestor, and D. M. Yenni and high velocity oxygen Fuel (Tucker, 1994).

1.4 Detonation Gun Spray Coating Process

D-gun spraying is one of the most promising thermal spray techniques and was originally developed and patented by Union Carbide (now Praxair) Since then, the D-gun coating process has been used for wide applications such as in the aircraft industries of the United States, Japan, and the former Soviet Union (Kharlamov, 1987; Kadvrov et al., 1995; Ma et al., 1999; Tucker, 1974).

A detonation gun consists of a water cooled barrel several feet long and about one inch in diameter with some associated valuing for gases and powder, as shown schematically in Fig. 1 (Rao et al., 1986). A carefully measured mixture of gases, usually oxygen and acetylene, is fed to the barrel along with a charge of powder (usually with a particle size less than 100 microns). A spark is used to ignite the gas and the resulting detonation wave heats and accelerates the powder as it moves down the barrel.

Detonation gun coatings thus consist of multiple layers of densely packed, thin lenticular particles tightly bonded to the surface. Primarily because of their high density and high bond strength, Praxair Surface Technologies' D-Gun coatings become the standard of excellence for thermal spray coatings.

Fig.1 Schematic diagram of the D-gun spray process.

II. EXPERIMENTAL PROCEDURE

2.1 Selection of The Substrate Material

Selection of the substrate materials for the present study has been made on the basis of applications in nuts, fasteners. The chosen material is low carbon steels, designated as mild steel MS. Table 1 shows chemical composition of the MS.

Table 1 Chemical composition (Wt 76) of the Wis								
	C	Mn	Si	P	<mark>Pb</mark>	Cr	<mark>Cu</mark>	<mark>Mo</mark>
<mark>MS</mark>	<mark>0.21</mark>	<mark>0.29</mark>	<mark>0.092</mark>	<mark>0.039</mark>	<mark>0.028</mark>	<mark>0.081</mark>	-	-

Table 1	Chemical	composition	(Wt	%) of	the	MS
---------	----------	-------------	-----	---	------	-----	----

2.3 Preparation of Substrate Material

Small cylindrical pins having circular cross-section of 8 mm dia and length 50 mm were prepared from MS material. These pins were required to perform pin-on-disk experiment at room temperature. The faces of the pins were grinded, followed by polishing with emery papers down to 1000 grit. Figure 2 shows sketch of the pin prepared for the wear study.

Fig. 2 Sketch of pin (specimen) used for pin-on-disc wear test

2.4 Thermal Spray Powders for Coatings

The coating namely tungsten carbide (WC) + (10%) Cobalt (Co) + (4%) Chromium (Cr) was chosen for detonation spray deposition on the substrate specimens. The particle size for both these powders was $25\mu m \pm 10\mu m$.

2.5 Formulation of The Coatings

The WC – 10Co -4Cr powder were successfully deposited on MS substrate steek by the detonation spray process. The coatings were deposited at SVX Powder M Surface Engineering Private Limited, Greater Noida, UP, India. The process parameters as reported in table were kept constant throughout the coating process.

2.6 Measurement of Coating Thickness

The thickness of coatings was monitored during the process of detonation spraying with a thickness gauge; Minitest-2000 made in Germany. Efforts were made to obtain coatings of uniform thickness.

A uniform thickness coating of 250 μ m ± 10 μ m was deposited in all the cases of WC – 10Co -4Cr powder for all the substrate steels.

2.7 Scanning Electron Microscopy (SEM)

Surface morphology of the as sprayed coatings was studied with the help of Scanning Electron Microscope with an aim to understand the structure of coatings and identify oxide inclusions, unmelted particles, pores etc. SEM analysis was conducted by using Scanning Electron Microscope.

III. SLIDING WEAR STUDIES USING PIN- ON -DISC WEAR TEST RIG

3.1 Experimental Set Up

Dry sliding wear tests for the uncoated and detonation sprayed MS were conducted using a pin-on-disc machine [Model: Wear and Friction Monitor Tester TR-20]. Some photographs of the set up of the machine are shown in Fig 3. The tests were conducted in air having relative humidity in range from 40 to 75 %. Wear tests were performed on the pin specimens that had flat surfaces in the contact regions and the rounded corner. The pin was held stationery against the counter face of a rotating disc made of En-32 steel at 60 mm track diameter. En-32 steel is a plain carbon steel; case hardened 62 to 65 HRC as provided with the pin-on-disc machine. The composition of the material of the steel disc is given in table 2.

Fig.3 (a) Pin-on-disc wear test machine (b) Control Unit with computer interface (c) Weighing apparatus. (Courtsey-G.Z.S.C.E.T., Bathinda). Table ? Chamical composition (wt %) of the En 3? steel disc

Table 2 Chemical composition (wt %) of the En-52 steel disc.								
<mark>C</mark>	<mark>Si</mark>	<mark>Mn</mark>	<mark>S</mark>	P P				
0.42 (max)	<mark>0.05-0.35</mark>	<mark>0.40-0.70</mark>	0.05 (max)	0.05 max)				

3.2 Sliding Wear Studies

The uncoated as well as coated specimens were prepared for sliding wear studies as describe in the section . The pins were polished with emery paper and both disc and the pin were cleaned and dried before carrying out the test. The pin was loaded against the disc through a dead weight loading system. The wear test for coated as well as uncoated specimens was conducted at constant velocity i.e. at 1 ms-1 and at different loads i.e. 50N, 60N and 70N. The track radii for the pins were kept at 40 mm. The speed of the rotation (478 rpm) of the disc for all the cases was so adjusted to keep the linear sliding velocity at a constant value of 1 m/s. A variation of \pm 5 rpm was observed in the rpm of the disc. Wear tests have been carried out for a total sliding distance of 5400 m, so that only top coated surface was exposed for each detonation sprayed sample. Weight losses of each sample were measured after 5, 5, 10, 10, 20, 40 minutes to determine the wear loss. The pin was removed from the holder after each run, cooled to room temperature, brushed lightly to remove lose wear debris, weighed and fixed again in exactly the same position in the holder so that the orientation of the sliding surface remains unchanged. The weight has been measured by a micro balance to an accuracy of 0.001 g. The coefficient of friction has been determined from the friction force and the normal loads; only pre-calibrated dead loads were used.

3.3 Analysis for Sliding Wear Study

All the specimens subjected to sliding wear were analyzed for the characterization of wear surfaces. The worn surfaces of the specimen have been examined under the scanning electron microscope using JEOL Scanning Electronic Microscope (Model: JSM-840) at IIT, Ropar (INDIA).

3.4 Wear Kinetics

The wear rate data for the coated as well as uncoated specimens were plotted with respect to sliding distance to establish the wear kinetics. The specific wear rates for the coated and uncoated material were obtained by

 $W = \Delta w / L \rho F$

Where W denotes specific wear rates in, mm³/N-m Δw is the weight loss measured in, g L the sliding distance in, m ρ the density of the worn material in g/ mm³ and F the applied load in N.

3.5 Wear Volume

The wear volume loss was also calculated from the weight loss and density of the material for all the investigated cases. These data were reported in the form of plots showing the cumulative wear volume loss v/s sliding distance for all the cases. Bar charts were also drawn to show net wear volume loss for all the cases.

Volume = mass / density

Wear Volume Loss = $(w/9.81)/\rho$ Where w is the weight loss in, g and ρ is the density of material, g/mm³

IV. RESULT AND DISCUSSION

These coatings were deposited on the MS to enhance the wear resistance. The usefulness of these coatings with regard to wear protection was investigated with the help of Pin-on-Disk Wear Test Rig according to ASTM Standard G99-03 as has already been stated. The uncoated MS showed higher cumulative wear rate (CWR), as well as, in cumulative wear volume (CWV), loss in the comparison to their detonation sprayed WC - 10Co -4Cr coated MS specimens under the normal load of 50N, 60N and 70N.

V. WEAR BEHAVIOUR

behaviour of the bare, as well as, detonation sprayed Wc-10Co-4Cr coated MS has been explained with the help of results obtained from the pin-on-disk wear testing. The characteristics of as-sprayed detonation spray coatings are also included.

5.1 Wear Rate

The variation of the cumulative wear rate with the sliding distance for the detonation spray Wc-10Co-4Cr coated and uncoated MS steel at a normal loads of 50N, 60N, 70N have been plotted in Figure 4 whereas the CWR data has been shown in figure 5. It is evident from the plots that the uncoated MS steel has shown much higher wear rates as compared to the coated counterparts. Whereas the wear rates in all other cases are comparatively very lesser at loads for the sliding distance of 5400 m. WC – 10Co -4Cr coated MS specimen has shown negligible wear.

Furthermore, the cumulative wear rates after a total sliding distance of 5400 m for all these cases have been shown in Fig. 5. It is evident from the bar chart that the cumulative wear rate for the MS steel has decreased significantly after the application of Wc-10Co-4Cr coatings. Hence, it is clear that WC – 10Co -4Cr have shown better wear resistance on the basis of the overall wear rate for the whole range of sliding distance. Therefore it can be concluded that the detonation sprayed WC – 10Co -4Cr coating is more effective to provide wear resistance to the steel. Overall results indicate clearly the beneficial effect of WC – 10Co -4Cr coatings to control the wear of the steel.

Fig. 4 cumulative wear rate for the uncoated, the detonation sprayed Wc-10Co-4Cr coated MS steel subjected to wear at normal loads of 50N, 60N and 70 N and sliding velocity of 1m/sec

Fig. 5 Cumulative wear rate for the uncoated, the detonation sprayed Wc-10Co-4Cr coated MS steel subjected to wear at normal load of 70 N and sliding velocity of 1 m/sec after a sliding distance of 5400 meters.

5.2 Wear Volume

The variation of the cumulative wear volume with the sliding distance for the detonation sprayed Wc-10Co-4Cr coated and uncoated MS steel at a normal load of 50N has been plotted in Figure 6. whereas the CWV after a total sliding distance of

5400m for all the cases has been shown in figure 7. It is clear from the Fig. 7. that the uncoated MS steel has shown significant higher wear volume losses in comparison with its Wc–10Co-4Cr coated counterparts. For the uncoated MS steel, it has shown increase in volume loss after crossing a sliding distance of 300 m. This specific distance is found to be highest in the case of WC – 10Co -4Cr coated MS steel, whereas, it is lowest for the uncoated MS steel. In this way, it is clear that the wear volume loss has decreased significantly after the application of the coatings.

Fig. 6 cumulative wear volume for the uncoated, the detonation sprayed Wc–10Co-4Cr coated MS steel subjected to wear at normal loads of 50N, 60N and 70 N and sliding velocity of 1m/sec.

Fig. 7 Cumulative wear rate for the uncoated, the detonation sprayed Wc-10Co-4Cr coated MS steel subjected to wear at normal load of 50N, 60N and 70 N and sliding velocity of 1 m/sec after a sliding distance of 5400 meters.

VLSEM/ EDS ANALYSIS OF THE COATINGS AFTER WEAR

The SEM micrographs showing the morphology of the bare, as well as, detonation sprayed Wc-10Co-4Cr coated MS steel. Here, Fig.8 and Fig.9 shows the SEM analysis without any load. After subjecting to wear testing at a load of 50,60,70 N with a sliding velocity of 1m/s for a total sliding distance of 5400 meters have been shown in Fig.10 and Fig.11. It is clear from the Fig.10 that the surface of the uncoated MS steel has suffered a tremendous damage due to the wear testing. This damage is both along as well as, to the direction of sliding of the disc. Whereas the wear damage is comparatively lower in the coated cases. The wear craters are comparatively larger in size in the case of uncoated MS steel, followed by Wc-10Co-4Cr coated MS steel in that order.On the bases of the above discussion on SEM analysis of the coatings after the sliding wear, it may be concluded that the both the coatings could reduce the extent of wear damage of the given steels. EDS analysis of the surfaces of the uncoated MS specimen indicates higher peaks of Fe and O, whereas for detonation sprayed WC-10Co-4Cr coated specimens, there is the presence of unmelted particles of the coating powders. The worn area analyzed to have higher amount of tungsten (W) in case of WC-10Co-4Cr coatings which are responsible for increased wear resistance of the specimen. In WC-10Co-4Cr coatings, there is a very dense layer of coating is observed showing negligible wear. The presence of Tungsten (W) along with carbon indicates the formation of carbides at the surface which is responsible to increase the wear resistance in WC-10Co-4Cr coatings. coated cases.

Fig. 8 SEM analysis of uncoated MS (without load).

Fig.9 SEM analysis of detonation sprayed Wc-10Co-4Cr coated MS (without load)

Fig.11 SEM analysis of detonation sprayed Wc-10Co-4Cr coated MS (At 70N load).

VII. CONCLUSIONS

- ▶ Increase in wear rate was observed with the increase in load.
- ▶ Wear volume loss of Uncoated MS was observed comparatively higher than WC–10Co-4Cr coatings specimen.
- Improvement in wear resistance of MS was observed after the deposition of detonation sprayed WC-10Co-4Cr coating.
- Detonation spray process provides the possibility of deposition of WC-10Co-4Cr powder on the MS steels. A uniform coating thickness of 250+10 micrometer was achieved.
- The coating was found to be successful in retaining their surface contact with the MS substrate steels when subjected to wear tests.

REFERANCE

- [1] ASTM Standard G99-03, (2003), "Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus" American Society for Testing and Materials Standards, Philadelphia.
- [2] Berge Van den F., (1998), "Thermal Spray Processes: An Overview", Journal of Advanced Materials and Processes, Vol. 154(6)
- [3] Bhushan B., and Gupta B. K., (1991), "Handbook of Tribology: Material Coating and Surface Treatments", McGraw-Hill, New York
- [4] Dheeraj Gupta & A.K. Sharma, (2010), "Investigation on sliding wear performance ofWC10Co2Ni cladding developed through microwave irradiation" Wear 271 (2011) pp.-1642–1650
- [5] Gartner, (1999), "Professional Thermal Spray Equipment", Gartner Thermal Spraying Company
- [6] Gulenc B., Kahraman N. "Wear behaviour of bulldozer rollers welded using a submerged arc welding process". Journal of Materials & Design, Volume 24, 2003, pp 537 –542.
- [7] Habig K.H., "Wear behaviour of surface coatings on steels", Journal of Tribology International 1989, volume 22, issue 2, 1989, pp 65-73.
- [8] J.M. Guilemany_, J.M. Miguel, S. Vizcaino, F. Climent (2001)," Role of three-body abrasion wear in the sliding wear behaviour of WC-Co coatings obtained by thermal spraying" Surface and Coatings Technology vol.140 pp. 141-146
- [9] K.N.Balan & B.R.Ramesh Bapu, (2010), "The Hardness Enhancement Technique for Detonation Gun Coating", Vol. 978-1-pp.4244-9082
- [10] Murthy J, Venkataraman B,(2006), "Abrasive wear behaviour of WC-CoCr and Cr3C2-20(NiCr) deposited by HVOF and detonation spray processes" Surface & Coatings Technology, Vol. 200, pp. 2642–2652
- [11] Mohanty M, Smith R, Bonte M, Celis L, Lugscheider, (1996), "Sliding wear behavior of thermally sprayed 75/25 Cr3C2/NiCr wear resistant coatings" Wear, Vol.198, pp. 251-266
- [12] Mishra S.B., (2006), "Development of Erosion-Corrosion wear resistant on Super Alloys" Ph.D. Thesis, Department of Metallurgical and Materials Engineering, Indian Insitute of Technology Roorkee, Roorkee
- [13] R.E. Clegg & D.R.H. Jones, (2002), "Liquid metal embrittlement of tensile specimens of En19 steel by tin" Vol. 10, pp. 119–130
- [14] Stokes Joseph, (2003) "The Theory and Application of HVOF Thermal Spray Process", Dublin: Dublin City University