

Scientific Journal of Impact Factor (SJIF): 5.71

e-ISSN (O): 2348-4470 p-ISSN (P): 2348-6406

International Journal of Advance Engineering and Research Development

Volume 5, Issue 03, March -2018

# Generation of Rainfall Intensity-Duration-Frequency Relationship for Rangpur City Corporation in Bangladesh

Wahiduzzaman

Senior Drainage Engineer, Rendel Ltd, 200 Great Dover Street, London SE1 4YB, United Kingdom

**Abstract**: The objective of this study is to generate Rainfall IDF relationship for Rangpur City Corporation of Bangladesh. The common frequency analysis technique Gumbel distribution was used to develop IDF relationship from rainfall data of this city corporation. Yearly daily maximum rainfall data for 55 years (1955-2010) from Bangladesh Meteorological Department (BMD) was used in this study. Indian Meteorological Department (IMD) empirical reduction formula was used to estimate short duration rainfall intensity from yearly maximum rainfall data. The parameters of the IDF equation and constants for different return periods (2, 5, 10, 15, 20, 25, 30, 50, 75 and 100 years) were calculated by using nonlinear regression method. The results obtained presented that in all the cases the correlation coefficient is very high ( $R^2=1$ ) representing goodness of fit of the equation to estimate IDF curves of Rangpur City Corporation. It was found that intensity of rainfall decreases with increase in rainfall duration. Further, a rainfall of any given duration will have a larger intensity if its return period is large.

Keyword: Rainfall Intensity, Rainfall Duration, Rainfall Frequency, Gumbel's Extreme Value Distribution Method

# I. Introduction

Due to rapid urbanization and increase in population, urban regions of Bangladesh require immediate improvement of drainage systems. Realizing the importance of this issue, the Government of Bangladesh (GOB) has emphasized on this matter; and has already taken initiative to develop or improve the drainage system of the Township/Municipal areas/City Corporations. In this regard, under Feasibility Study and Master Plan Review (FSMP) project, Rangpur City Corporation has been identified for drainage improvement studies. At present the Rangpur City is rapidly urbanizing. Due to this rapid urbanization, the drainage problem could be a big issue in the future. For improving drainage system of Rangpur City Corporation hydrological analysis was necessary for hydraulic design of the drainage system.

The rainfall Intensity Duration-Frequency (IDF) relationship in one of the most important tools in water resource engineering to assess the risk and vulnerability of water resource structure as well as for planning, design and operation. The establishment of such relationship was done as early as 1932[1, 2]. The Rainfall intensity-duration-frequency (IDF) curves are graphical exemplifications of the amount of water that falls within a given period of time in catchment areas [1]. It is a mathematical relationship between the rainfall intensity I, the duration t, and the return period T [4, 3]. In the present study a rainfall Intensity Duration-Frequency (IDF) curve has been developed for the Rangpur City Corporation.

# II. Study Area

Rangpur is one of the newly established City Corporations of the country. It is the second largest city of the northern region of the country. Apart from the status of a city corporation it is the administrative headquarters of Rangpur divisionand an important regional centre for education, medicine and commerce. The total area of Rangpur City corporation is about 204 sq km. It is situated on the bank of the river Ghagot- a moribund tributary of the river Teesta. The Rangpur City Corporation is located 335km north-west of the capital city Dhaka. The man-made canal Shyamasundari passes over the city starting from Ghagot river and falls into Khoksha-Ghagot river. At present this man-made canal is the main drainage system of the city area. Figure 1 show the location Rangpur City Corporation.



Figure 1: Location of Study Area (Rangpur City Corporation)

## III. Data Collection and Methodology

For this study 24 hr daily rainfall data from year 1955 to 2010 was collected from Bangladesh Meteorological Department (BMD) for Rangpur City Corporation. From the daily data maximum yearly rainfall data was used in the analysis. The observed maximum daily rainfall in each year is shown in Figure 2.



Figure 2: Maximum daily rainfall in each year

#### **III.1** Estimation of Short Duration Rainfall

Indian Meteorological Department (IMD) use an empirical reduction equation (1) for estimation of various duration like 5min, 10min, 15min, 20min, rainfall values from annual maximum values. This equation was found to be given the best estimation of short duration rainfall [5]. In this study this empirical equation (1) was used to estimate short duration rainfall of Rangpur City Corporation. Calculated precipitation are given in Table 1.

 $P_t = P_{24} (t/24) ^1/3....(1)$ 

Where,  $P_t$  is the required rainfall depth in mm at t-hr duration,  $P_{24}$  is the maximum daily rainfall in mm.

| No. Yr | Year | Max Daily<br>Rainfall (mm)<br>in each year<br>(P <sub>24</sub> ) | Rainfall Precipitation $P_t = P_{24} (t/24)^{1/3}$ |        |        |        |        |        |         |
|--------|------|------------------------------------------------------------------|----------------------------------------------------|--------|--------|--------|--------|--------|---------|
|        |      |                                                                  | Hour                                               |        |        |        |        |        |         |
|        |      |                                                                  | 0.083                                              | 0.166  | 0.333  | 0.5    | 0.66   | 0.833  | 1       |
| 1      | 1955 | 182                                                              | 27.523                                             | 34.677 | 43.734 | 50.079 | 54.935 | 59.368 | 63.096  |
| 2      | 1956 | 211                                                              | 31.908                                             | 40.202 | 50.702 | 58.059 | 63.688 | 68.827 | 73.150  |
| 3      | 1957 | 89                                                               | 13.459                                             | 16.957 | 21.386 | 24.489 | 26.864 | 29.031 | 30.855  |
| 4      | 1958 | 78                                                               | 11.796                                             | 14.861 | 18.743 | 21.463 | 23.544 | 25.443 | 27.041  |
| 5      | 1960 | 116                                                              | 17.542                                             | 22.102 | 27.874 | 31.919 | 35.014 | 37.839 | 40.215  |
| 6      | 1961 | 205                                                              | 31.001                                             | 39.059 | 49.260 | 56.408 | 61.877 | 66.870 | 71.070  |
| 7      | 1962 | 254                                                              | 38.411                                             | 48.395 | 61.035 | 69.891 | 76.667 | 82.854 | 88.057  |
| 8      | 1963 | 231                                                              | 34.933                                             | 44.013 | 55.508 | 63.562 | 69.725 | 75.351 | 80.083  |
| 9      | 1964 | 153                                                              | 23.137                                             | 29.151 | 36.765 | 42.100 | 46.182 | 49.908 | 53.042  |
| 10     | 1965 | 133                                                              | 20.113                                             | 25.341 | 31.959 | 36.596 | 40.145 | 43.384 | 46.109  |
| 11     | 1966 | 79                                                               | 11.947                                             | 15.052 | 18.983 | 21.738 | 23.845 | 25.769 | 27.388  |
| 12     | 1967 | 85                                                               | 12.854                                             | 16.195 | 20.425 | 23.389 | 25.656 | 27.727 | 29.468  |
| 13     | 1969 | 150                                                              | 22.684                                             | 28.580 | 36.044 | 41.274 | 45.276 | 48.929 | 52.002  |
| 14     | 1970 | 96                                                               | 14.518                                             | 18.291 | 23.068 | 26.415 | 28.977 | 31.315 | 33.281  |
| 15     | 1971 | 107                                                              | 16.181                                             | 20.387 | 25.712 | 29.442 | 32.297 | 34.903 | 37.095  |
| 16     | 1972 | 90                                                               | 13.610                                             | 17.148 | 21.627 | 24.764 | 27.166 | 29.358 | 31.201  |
| 17     | 1973 | 127                                                              | 19.206                                             | 24.197 | 30.517 | 34.945 | 38.334 | 41.427 | 44.028  |
| 18     | 1975 | 66                                                               | 9.981                                              | 12.575 | 15.859 | 18.161 | 19.921 | 21.529 | 22.881  |
| 19     | 1976 | 116                                                              | 17.542                                             | 22.102 | 27.874 | 31.919 | 35.014 | 37.839 | 40.215  |
| 20     | 1977 | 175                                                              | 26.464                                             | 33.343 | 42.052 | 48.153 | 52.822 | 57.084 | 60.669  |
| 21     | 1978 | 125                                                              | 18.903                                             | 23.816 | 30.037 | 34.395 | 37.730 | 40.774 | 43.335  |
| 22     | 1979 | 290                                                              | 43.855                                             | 55.254 | 69.685 | 79.797 | 87.534 | 94.597 | 100.537 |
| 23     | 1980 | 205                                                              | 31.001                                             | 39.059 | 49.260 | 56.408 | 61.877 | 66.870 | 71.070  |
| 24     | 1981 | 88                                                               | 13.308                                             | 16.767 | 21.146 | 24.214 | 26.562 | 28.705 | 30.508  |
| 25     | 1982 | 185                                                              | 27.977                                             | 35.248 | 44.455 | 50.905 | 55.840 | 60.346 | 64.136  |
| 26     | 1983 | 166                                                              | 25.103                                             | 31.628 | 39.889 | 45.677 | 50.106 | 54.148 | 57.549  |
| 27     | 1984 | 290                                                              | 43.855                                             | 55.254 | 69.685 | 79.797 | 87.534 | 94.597 | 100.537 |
| 28     | 1985 | 204                                                              | 30.850                                             | 38.868 | 49.020 | 56.133 | 61.575 | 66.544 | 70.723  |
| 29     | 1986 | 140                                                              | 21.171                                             | 26.674 | 33.641 | 38.522 | 42.258 | 45.667 | 48.535  |
| 30     | 1987 | 247                                                              | 37.352                                             | 47.061 | 59.353 | 67.965 | 74.555 | 80.570 | 85.630  |
| 31     | 1988 | 152                                                              | 22.986                                             | 28.961 | 36.525 | 41.824 | 45.880 | 49.582 | 52.695  |
| 32     | 1989 | 159                                                              | 24.045                                             | 30.294 | 38.207 | 43.751 | 47.993 | 51.865 | 55.122  |
| 33     | 1990 | 161                                                              | 24.347                                             | 30.675 | 38.687 | 44.301 | 48.596 | 52.517 | 55.816  |
| 34     | 1991 | 164                                                              | 24.801                                             | 31.247 | 39.408 | 45.126 | 49.502 | 53.496 | 56.856  |
| 35     | 1992 | 220                                                              | 33.269                                             | 41.917 | 52.865 | 60.535 | 66.405 | 71.763 | 76.270  |
| 36     | 1993 | 173                                                              | 26.162                                             | 32.962 | 41.571 | 47.603 | 52.218 | 56.432 | 59.976  |
| 37     | 1994 | 86                                                               | 13.005                                             | 16.386 | 20.665 | 23.664 | 25.958 | 28.053 | 29.815  |
|        |      |                                                                  |                                                    |        |        |        |        |        |         |

| Continuation of Table 1 |      |               |                                                         |        |        |        |        |        |         |  |  |  |
|-------------------------|------|---------------|---------------------------------------------------------|--------|--------|--------|--------|--------|---------|--|--|--|
|                         |      | Max Daily     | Rainfall Precipitation $P_t = P_{24} (t/24) \wedge 1/3$ |        |        |        |        |        |         |  |  |  |
|                         | Year | Rainfall (mm) | Hour                                                    |        |        |        |        |        |         |  |  |  |
| No. Yr                  |      | $(P_{24})$    | 0.083                                                   | 0.166  | 0.333  | 0.5    | 0.66   | 0.833  | 1       |  |  |  |
| 38                      | 1995 | 245           | 37.050                                                  | 46.680 | 58.872 | 67.414 | 73.951 | 79.918 | 84.937  |  |  |  |
| 39                      | 1996 | 149           | 22.532                                                  | 28.389 | 35.804 | 40.999 | 44.974 | 48.603 | 51.655  |  |  |  |
| 40                      | 1997 | 224           | 33.874                                                  | 42.679 | 53.826 | 61.636 | 67.612 | 73.068 | 77.656  |  |  |  |
| 41                      | 1998 | 108           | 16.332                                                  | 20.577 | 25.952 | 29.717 | 32.599 | 35.229 | 37.442  |  |  |  |
| 42                      | 1999 | 210           | 31.757                                                  | 40.012 | 50.462 | 57.784 | 63.387 | 68.501 | 72.803  |  |  |  |
| 43                      | 2000 | 95            | 14.366                                                  | 18.100 | 22.828 | 26.140 | 28.675 | 30.989 | 32.935  |  |  |  |
| 44                      | 2001 | 281           | 42.494                                                  | 53.539 | 67.523 | 77.320 | 84.817 | 91.661 | 97.417  |  |  |  |
| 45                      | 2002 | 294           | 44.460                                                  | 56.016 | 70.647 | 80.897 | 88.741 | 95.901 | 101.924 |  |  |  |
| 46                      | 2003 | 219           | 33.118                                                  | 41.726 | 52.625 | 60.260 | 66.103 | 71.437 | 75.923  |  |  |  |
| 47                      | 2004 | 227           | 34.328                                                  | 43.251 | 54.547 | 62.461 | 68.518 | 74.046 | 78.697  |  |  |  |
| 48                      | 2005 | 192           | 29.035                                                  | 36.582 | 46.137 | 52.831 | 57.953 | 62.630 | 66.563  |  |  |  |
| 49                      | 2006 | 87            | 13.157                                                  | 16.576 | 20.906 | 23.939 | 26.260 | 28.379 | 30.161  |  |  |  |
| 50                      | 2007 | 263           | 39.772                                                  | 50.110 | 63.198 | 72.367 | 79.384 | 85.789 | 91.177  |  |  |  |
| 51                      | 2008 | 107           | 16.181                                                  | 20.387 | 25.712 | 29.442 | 32.297 | 34.903 | 37.095  |  |  |  |
| 52                      | 2009 | 256           | 38.713                                                  | 48.776 | 61.515 | 70.441 | 77.271 | 83.506 | 88.750  |  |  |  |
| 53                      | 2010 | 126           | 19.054                                                  | 24.007 | 30.277 | 34.670 | 38.032 | 41.101 | 43.682  |  |  |  |

#### III.2 Gumbel Theory of Distribution

Gumbel distribution methodology was selected for performing flood probability analysis. It is the most widely used distribution for IDF analysis owing to its suitability for modelling maxima. It is relatively simple and use extreme events (maximum values rainfall). Using Gumbel Distribution method calculates the 2, 5, 10, 15, 20, 50, 75 and 100 year return intervals for each duration period and requires several calculations. Frequency rainfall/precipitation  $P_T$  (in mm) for each duration with a specified return period T (in year) is given by the following equation:

 $P_{\rm T} = P_{\rm ave} + KS.$  (2)

Where K is Gumbel frequency factor given by:

$$K = -\left(\frac{6^{0.5}}{\pi}\right) * \left[0.5772 + \ln\left[\ln\left[\frac{T}{T-1}\right]\right]\right]....(3)$$

Where  $P_{ave}$  is the average of the maximum precipitation corresponding to a specific time duration. In utilizing Gumbel's distribution, the arithmetic average in equation (2) is used:

 $Pave = \left(\frac{1}{n}\right) \sum_{i=1}^{n} Pi \quad \dots \qquad (4)$ 

Where Pi is the individual extreme value of rainfall and n is the number of events or years of record. The standard deviation is calculated by equation (5) computed using the following relation:

$$S = \left[\frac{1}{n-1}\sum_{i=1}^{n} (Pi - Pave)^{2}\right]^{1/2} \dots (5)$$

Where S is the standard deviation of P data. The frequency factor (K), which is a function of the return period and sample size, when multiplied by the standard deviation gives the departure of a desired return period rainfall from the average. Then the rainfall intensity, I (mm/hr) for different return period T is calculated by equation (6). The frequency of the rainfall is usually defined by reference to the annual maximum series, which consists of the largest values observed in each year. An alternative data format for rainfall frequency studies is that based on the peak-over threshold

concept, which consists of all precipitation amounts above certain thresholds selected for different durations. Due to its simpler structure, the annual-maximum-series method is more popular in practice [6].

 $I = P_T / t \dots (6)$ 

Where t is duration in hours.

From the raw data the maximum rainfall/precipitation (P) and the statistical variables (average and standard deviation) for each duration (5,10,20,30,40,50,60 min) were computed. Figure 3and Table 2 shows the computed intensity (I) for different return periods using Gumbel method.

|        |      | Average        | standar      |           |                 |           |          |         |               |           |       |       |       |
|--------|------|----------------|--------------|-----------|-----------------|-----------|----------|---------|---------------|-----------|-------|-------|-------|
| Duro   | tion | max            | a<br>doviati |           |                 |           |          |         |               |           |       |       |       |
| t Dura | uon  | on <b>Pave</b> | on S         | Return    | Return Period T |           |          |         |               |           |       |       |       |
| C      |      | 0.1.2.4.0      | 011.0        | 2         | 5               | 10        | 15       | 20      | 25            | 30        | 50    | 75    | 100   |
| hou    | mi   |                |              | Gumbel    | Freque          | ncv Fact  | or K for | each    |               |           | ••    |       |       |
| r      | n    |                |              | Return I  | Period          | Ũ         |          |         |               |           |       |       |       |
|        |      |                |              | -0.16     | 0.72            | 1.31      | 1.64     | 1.87    | 2.04          | 2.19      | 2.59  | 2.91  | 3.14  |
|        |      |                |              | Rainfall  | l Precipi       | tation (r | nm/hr),  | using G | umbel N       | lethod, I | PT    |       |       |
|        |      |                |              | = Pave +  | KS              |           |          |         |               |           |       |       |       |
| 0.0    |      |                |              |           |                 |           |          |         |               |           |       |       |       |
| 8      | 5    | 25.34          | 9.84         | 23.72     | 32.43           | 38.19     | 41.44    | 43.71   | 45.47         | 46.89     | 50.87 | 54.01 | 56.23 |
| 0.1    | 10   | 21.02          | 10.40        | 20.00     | 40.05           | 40.11     | 50.01    | 55.00   | <b>57 2</b> 0 | 50.00     | 64.00 | <0.05 | 70.04 |
| 7      | 10   | 31.93          | 12.40        | 29.89     | 40.85           | 48.11     | 52.21    | 55.08   | 57.29         | 59.08     | 64.09 | 68.05 | 70.84 |
| 0.3    | 20   | 40.27          | 15.64        | 37.70     | 51.53           | 60.68     | 65.85    | 69.46   | 72.25         | 74.51     | 80.83 | 85.82 | 89.35 |
| 0.5    |      |                | 10101        | 01110     | 01100           | 00.00     | 00100    | 0,110   | / 2120        | ,         | 00100 | 00.02 | 102.3 |
| 0      | 30   | 46.11          | 17.91        | 43.17     | 59.00           | 69.48     | 75.40    | 79.54   | 82.73         | 85.33     | 92.56 | 98.27 | 1     |
| 0.6    |      |                |              |           |                 |           |          |         |               |           | 101.5 | 107.8 | 112.2 |
| 7      | 40   | 50.58          | 19.65        | 47.35     | 64.72           | 76.22     | 82.71    | 87.25   | 90.75         | 93.60     | 3     | 0     | 3     |
| 0.8    |      |                |              |           |                 |           |          |         |               | 101.1     | 109.7 | 116.5 | 121.2 |
| 3      | 50   | 54.66          | 21.23        | 51.17     | 69.94           | 82.37     | 89.38    | 94.29   | 98.08         | 5         | 2     | 0     | 9     |
| 1.0    |      |                |              |           |                 |           |          | 100.2   | 104.2         | 107.5     | 116.6 | 123.8 | 128.9 |
| 0      | 60   | 58.09          | 22.57        | 54.39     | 74.34           | 87.55     | 95.00    | 2       | 3             | 0         | 2     | 1     | 0     |
|        |      |                |              | Intensity | 7 ( <b>mm/h</b> | r),       |          |         |               |           |       |       |       |
|        |      |                |              | I = PT/t  | 1               |           |          |         |               |           |       |       |       |
|        |      |                |              | 205.02    | 390.6           | 460.1     | 499.2    | 526.6   | 547.8         | 564.9     | 612.8 | 650.6 | 677.4 |
|        |      |                |              | 285.83    | 8               | 0         | 6        | 8       | 1             | 9         | 7     | 9     | 6     |
|        |      |                |              | 100.07    | 246.1           | 289.8     | 314.5    | 331.7   | 345.1         | 355.9     | 386.0 | 409.9 | 426.7 |
|        |      |                |              | 180.06    |                 | 4         | 1        | 9       | 0             | 2         | 9     | 1     | 1     |

Table 2: Intensity calculated using Gumbel Method

| intensity                             |       | L <i>)</i> , |       |       |       |       |       |       |       |
|---------------------------------------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|
| $\mathbf{I} = \mathbf{PT}/\mathbf{t}$ |       |              |       |       |       |       |       |       |       |
|                                       | 390.6 | 460.1        | 499.2 | 526.6 | 547.8 | 564.9 | 612.8 | 650.6 | 677.4 |
| 285.83                                | 8     | 0            | 6     | 8     | 1     | 9     | 7     | 9     | 6     |
|                                       | 246.1 | 289.8        | 314.5 | 331.7 | 345.1 | 355.9 | 386.0 | 409.9 | 426.7 |
| 180.06                                | 1     | 4            | 1     | 9     | 0     | 2     | 9     | 1     | 7     |
|                                       | 154.7 | 182.2        | 197.7 | 208.6 | 216.9 | 223.7 | 242.7 | 257.7 | 268.3 |
| 113.21                                | 3     | 2            | 3     | 0     | 6     | 7     | 3     | 1     | 1     |
|                                       | 118.0 | 138.9        | 150.8 | 159.0 | 165.4 | 170.6 | 185.1 | 196.5 | 204.6 |
| 86.33                                 | 0     | 7            | 0     | 8     | 6     | 5     | 2     | 4     | 2     |
|                                       |       | 114.4        | 124.1 | 131.0 | 136.2 | 140.5 | 152.4 | 161.8 | 168.5 |
| 71.10                                 | 97.18 | 5            | 9     | 1     | 7     | 4     | 5     | 6     | 2     |
|                                       |       |              | 107.3 | 113.2 | 117.7 | 121.4 | 131.7 | 139.8 | 145.6 |
| 61.43                                 | 83.97 | 98.89        | 0     | 0     | 4     | 3     | 2     | 5     | 0     |
|                                       |       |              |       | 100.2 | 104.2 | 107.5 | 116.6 | 123.8 | 128.9 |
| 54.39                                 | 74.34 | 87.55        | 95.00 | 2     | 3     | 0     | 2     | 1     | 0     |



Figure 3: Computed Intensity for different Return Periods using Gumbel Method from observed rainfall

## IV. Derivation of IDF equation

An equation (7)has been derived for calculating the rainfall intensity (I) for the Rangpur City Corporation for different return periods. Constants a and b for the equation (7) are given in Table 3. Figure 4 show a good agreement between intensity calculated by Gumbel (6)&by derived equation (7).

| Table 3: | Constants | for the | equation | (7) |
|----------|-----------|---------|----------|-----|
|          |           |         |          |     |

| Return Period | Constants |       |  |  |
|---------------|-----------|-------|--|--|
|               | a         | b     |  |  |
| 2             | 838.01    | 0.668 |  |  |
| 5             | 1145.4    | 0.668 |  |  |
| 10            | 1348.9    | 0.668 |  |  |
| 15            | 1463.8    | 0.668 |  |  |
| 20            | 1544.2    | 0.668 |  |  |
| 25            | 1606.1    | 0.668 |  |  |
| 30            | 1656.5    | 0.668 |  |  |
| 50            | 1796.8    | 0.668 |  |  |
| 75            | 1907.7    | 0.668 |  |  |
| 100           | 1986.2    | 0.668 |  |  |



Figure 4: Agreement between intensity calculated by Gumbel & derived equation (7)

#### **VI.Conclusion**

IDF is a good tool for planning, design and operation of water resources projects such as storm water drainage system. A relationship of R-IDF has been obtained to estimate rainfall intensities for different durations and return periods ranging between 2 and 100 years. The parameters of the design rainfall intensity for a given period of recurrence interval were estimated for the Rangpur City Corporation. The results showed that in all the cases data fitted the equation with a correlation coefficient ( $R^2$ ) equal to 1. This indicates the goodness of fit of the equation to estimate IDF curves in the Rangpur City Corporation for durations varying from 5 to 60 min and return periods from 2 to 100 years. These relationships are useful in the design of urban drainage works, e.g. storm drainage, culverts and other hydraulic structures

#### References

- [1] Dupont, B.S., Allen, D.L., Establishment of Intensity–Duration–Frequency Curves for Precipitation in the Monsoon Area of Vietnam. Kentucky Transportation Center, College of Engineer, University of Kentucky in corporation with US Department of Transportation, 2006.
- [2] Chow, V.T., Handbook of Applied Hydrology. McGraw-Hill Book, 1988.
- [3] Koutsoyiannis, D., On the appropriateness of the Gumbel distribution for modelling extreme rainfall, in: Proceedings of the ESF LESC Exploratory Workshop, Hydrological Risk: recent advances in peak river flow modelling, prediction and real-time forecasting, Assessment of the impacts of land-use and climate changes, European Science Foundation, National Research Council of Italy, University of Bologna, Bologna, October 2003.Koutsoyiannis, D., Kozonis, D., Manetas, A., 1998. A mathematical framework for studying rainfall intensity-duration frequency relationships. J. Hydrol. 206, 118-135.
- [4] Ilona, V., Frances, F. 2002. Rainfall analysis and regionalization computing intensity-duration-frequency curves, Universidad Politecnica de Valencia - Departamento de IngenieriaHidraulica Medio Ambiente - APDO. 22012 - 46071 Valencia - Spain.
- [5] Kim T, Shin J, Kim K and Heo J. Improving accuracy of IDF curves using long- and short duration separation and multi-objective genetic algorithm. World Environmental and Water Resources Congress. 2008, 1-12.
- [6] Burke, C.B., Burke, T.T., 2008. Storm Drainage Manual. Indiana LTAP.