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Abstract:-In this paper, the static and dynamic analysis of leaf is carried out using Finite Element Analysis. The ANSYS 

18.0 is used to analyze the model. The leaf spring is modeled in CATIA software. Analytical method is used to predict the 

maximum pay load of the vehicle and natural frequencies of leaf spring to compare with excitation frequency. With due 

consideration of factor of safety, the maximum bending stress and corresponding pay loads are computed analytically 

and validated with the results obtained in static analysis using ANSYS software. To assess the behavior of the different 

parametric combinations of the leaf spring, the modal analysis is carried out using ANSYS software to determine the 

natural frequencies and the corresponding mode shapes. These natural frequencies are compared with the excitation 

frequencies at different speeds of the vehicle with the various widths of the road irregularity. These excitation 

frequencies are validated with the analytical results. 
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I. INTRODUCTION 

 

A spring is an elastic body, whose function is to distort when loaded and to recovers its original shape when the 

load is removed. Semi-elliptic leaf springs are almost universally used for suspension in light and heavy commercial 

vehicles. For cars also, these are widely used in rear suspension. The spring consists of a number of leaves called blades. 

The blades are varying in length. The blades are usually given an initial curvature or cambered so that they will tend to 

straighten under the load. The leaf spring is based upon the theory of a beam of uniform strength. The lengthiest blade 

has eyes on its ends. This blade is called main or master leaf, the remaining blades are called graduated leafs. All the 

blades are bound together by means of steel straps. 

The leaves of the leaf spring require lubricant at periodic intervals. If not, the vehicle is jacked up so that the 

weight of the axle opens up the leaves. The spring is then cleaned thoroughly and sprayed with graphite penetrating oil. 

However, it is important to remember that in some vehicles, (e.g. Ambassador, TATA - 407) it is specified that the 

lubricant of spring leaves should not be done. In such cases the instruction must be followed. 

The lubrication of shackle pins at regular intervals, say 1000 km., should also be done with S.A.E 140 oil. 

However, no lubrication is required when rubber bushes are used, as in case of the Hindustan Ambassador car. A.strzat 

and T.Paszek performed a three dimensional contact analysis of the car leaf spring. Shahriar Tavakkoli, Farhang Aslani, 

and David S. Rohweder performed analytical prediction of leaf spring bushing loads using MSC/NASTRAN and 

MDI/ADAMS. 

Reddy et al [1] observed the variations of span, camber, thickness and no. of leaves will influence the design of 

the leaf spring. The resonance will not occur due to natural and exiting frequency coincident as they are varied by 

considerable difference.  

 
Fig 1 Elements of Leaf Spring 
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Fig 2. Parametric elements of Leaf Spring 

 

II. PROBLEM MODELING 

A. Problem Statement 

The objective of this investigation is to perform the modal analysis. The natural frequencies and the 

corresponding mode shapes are dogged to assess the behavior of the different parametric combinations of the leaf spring. 

These natural frequencies are compared with the excitation frequencies at different speeds of the vehicle with the various 

widths of the road irregularity. These excitation frequencies are intended mathematically.  

 

B. Methodology  

The bending stresses at different loading conditions under static and dynamic conditions are computed. The 

maximum bending stress and the corresponding pay loads are identified using analytical approach. The static analysis is 

performed using ANSYS software and validated the bending stresses are computed for safe design conditions. The 

natural frequencies and the corresponding mode shapes obtained by simulation under model analysis in ANYSY are 

compared with analytical results.   

 

C. Geometry  

In computer-aided design, geometric modeling is concerned with the computer compatible mathematical 

description of the geometry of an object. The mathematical description allows the model of the object to be displayed and 

manipulated on a graphics terminal through signals from the CPU of the CAD system. The software that provides 

geometric modeling capabilities must be designed for efficient use both by the computer and the human designer.  

An automobile assumed as a single degree of freedom system traveling on a sine wave road having wavelength of 

L. The contour of the road acts as a support excitation on the suspension system of an automobile .The period is related 

to ω by t=2/ω and L is the distance traveled as the sine wave goes through one period. 

In the geometrical modelling, length of leaf spring leaves, consequently the rotation angle and the radius of 

curvatures of each leaf are considered. The bending stresses are obtained under different loading conditions.  

  

i. Geometric Properties of leaf springs 

The following geometric properties are considered for modelling: Camber = 80 mm; Span = 1220 mm; Thickness = 7 

mm; Width = 70 mm; Number of full length leaves nF = 2; Number of graduated leaves nG = 8; Total Number of leaves n 

= 10; Material Properties of leaf spring; Material = Manganese Silicon Steel; Young’s Modulus E = 2.1E5 N/mm
2
; 

Density = 7.86E-6 kg/mm
3
; Poisson’s ratio = 0.3; Yield stress = 1680 N/mm

2
  

 

ii. Length of Leaf Spring Leaves 

The Effective length of the spring is computed using the equation 2L1 – (2/3) t. 

 

iii. Bending Stress of Leaf Spring 
Leaf springs (also known as flat springs) as shown in Fig.1 are made out of flat plates. The leaf springs may 

carry lateral loads, brake torque, driving torque etc., in addition to shocks. A single plate fixed at one end and loaded at 

the other end is considered for analysis. This plate may be used as a flat spring. The maximum bending moment at the 

cantilever end is M = W.L where t = thickness of plate, b = width of plate, and L = length of plate or distance of the load 

W from the cantilever end, the Section Modulus Z = I/Y, where I = (b.t
3
/12), Y = t/2. The bending stress in such a spring, 

f is determined using the relation (6W.L) / b.t
2
. The maximum deflection for a cantilever with concentrated load at free 

end is computed using the equation WL
3
 /3EI.  
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Fig 3. Modelling of Leaf spring for bending stress computation 

 
Fig 4. Modelling of Leaf spring for maximum deflection 

 

III. MODAL ANALYSIS 

In many engineering applications, the natural frequencies of vibration are of primary interest. This is probably the 

most common type of dynamic analysis and is referred to as an ‘eigen value analysis’. In addition to the frequencies, the 

mode shapes of vibration which arise at the natural frequencies are also of primary interest. These are the undamped free 

vibration response of the structure caused by an initial disturbance from the static equilibrium position. This solution 

derives from the general equation by zeroing the damping and applied force terms. Thereafter, it is assumed that each 

node is subjected to sinusoidal functions of the peak amplitude for that node. A finite element structure for which there is 

more than one d.o.f,  D is the vector of nodal d.o.f ,R is the load which contains the moments as well as forces, K is the 

stiffness matrix, C is the damping matrix and M the mass matrix, then               where   is the nodal 

velocity,    is nodal acceleration and amplitude (global) d.o.f. With no damping C=0 .Vibration is free if loads are either 

zero or constant. Vibration motion, consist of displacements that vary sinusoidally with time relative to the mean 

configuration Dm created by constant loads Rc. The equation for                Where Dm is the vector of nodal 

displacements in vibration and ω is the natural frequency in radians per second. The governing equation of undamped 

free vibrations            , is called eigenvalue problem. A natural frequency may also be called as resonant 

frequency and ωi
2
 is various called as eigenvalue, latent root or characteristic number. A mode may also be called an 

eigen vector, mode shape, normal mode or principal mode the smallest nonzero ωi is called the fundamental natural 

frequency of vibration, where the eigenvalue is equal to the total number of degrees of freedom in the model. Each 

eigenvalue or frequency has a corresponding eigenvector or mode shape. Since each of the eigenvectors cannot be null 

vectors, the mode shapes are also of interest of the engineer. These are normalized to the maximum displacement of the 

structure. The theoretical solution implies that the structure will vibrates in any mode shape indefinitely. However, since 

there is always some damping present in any structure, the vibrations eventually decay. 
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IV. MATHEMATICAL ANALYSIS 

 

No. Of leaves, length of leaf spring, rotation angle and radius of curvature of the each leaf can be used to model 

and compute the bending stresses in the leaf spring. The Table1 shows different parameters required for modelling the 

leaf spring when thickness is 7 mm; similar tabular values are obtained for thickness of 8, 9 and 10 mm. 

 

Table 1. Length of leaves when thickness is 7 mm 
Leaf 

Length 

Full leaf 

length (mm) 

Half leaf length 

(mm) 

Radius of 

curvature (mm) 

Half Rotation 

Angle (degrees) 

1 1240 620 2372.625 14.972 

2 1240 620 2379.625 14.928 

3 1108 554 2386.625 13.299 

4 978 489 2393.625 11.708 

5 846 423 2400.625 10.096 

6 716 358 2407.625 8.519 

7 584 292 2414.625 6.929 

8 454 227 2421.625 5.371 

9 322 161 2428.625 3.798 

10 190 95 2436.625 2.235 
 

The Table 2 shows different parameters required for modelling the leaf spring when Camber is 80 mm; similar 

tabular values are obtained for Camber of 90, 100 and 110 mm. 

 

Table 2. Length of leaves when Camber is 80 mm 
Leaf 

Length 

Full leaf 

length (mm) 

Half leaf 

length (mm) 

Radius of 

curvature (mm) 

Half Rotation 

Angle (degrees) 

1 1240 620 2372.625 14.972 

2 1240 620 2379.625 14.928 

3 1108 554 2386.625 13.299 

4 978 489 2493.625 11.705 

5 846 423 2400.625 10.096 

6 716 358 2407.625 8.519 

7 584 292 2414.625 6.929 

8 454 227 2421.625 5.371 

9 322 161 2428.625 3.798 

10 190 95 2436.625 2.235 

 
The Table 3 shows different parameters required for modelling the leaf spring when Span is 1120 mm; similar 

tabular values are obtained for span of 1220, 1320, 1420 mm. 

 

Table 3. Length of leaves when Span is 1120 mm 
Leaf 

Length 

Full leaf 

length (mm) 

Half leaf 

length (mm) 

Radius of 

curvature (mm) 

Half Rotation 

Angle (degrees) 

1 1140 570 2007 16.272 

2 1140 570 2014 16.216 

3 1020 510 2021 14.459 

4 900 450 2028 12.714 

5 780 390 2035 10.981 

6 660 330 2042 9.259 

7 540 270 2049 7.55 

8 420 210 2056 5.852 

9 300 150 2063 4.166 

10 180 90 2070 2.489 

 
The Table 4 shows different parameters required for modelling the leaf spring when number of leaves are 9; 

similar tabular values are obtained for number of leaves of 10, 11 and 12. 

 

Table 4. Length of leaves when number of leaves 9 
Leaf 

Length 

Full leaf 

length (mm) 

Half leaf length 

(mm) 

Radius of 

curvature (mm) 

Half Rotation 

Angle (degrees) 

1 1240 620 1917.5 18.526 

2 1240 620 1924.5 18.459 

3 1092 546 1931.5 16.196 

4 946 473 1938.5 13.980 

5 798 399 1945.5 11.751 

6 650 325 1952.5 9.537 

7 502 251 1959.5 7.339 

8 356 178 1966.5 5.186 

9 208 104 1973.5 3.019 
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The variation of bending stress of leaf spring is tabulated in Table 5. 

Table 5 Variation of Bending Stress with load 

Load (N) Bending Stress (N/mm2) 

1000 48.502 

2000 97.005 

3000 145.075 

4000 194.010 

5000 242.512 

6000 291.015 

7000 339.517 

8000 388.020 

9000 436.52 

10000 485.025 

11000 533.527 

12000 582.03 

13000 630.532 

14000 679.035 

15000 727.537 

The leaf is analyzed under the conditions of road irregularity, for varying speeds ranging from 20 Kmph to 140 

Kmph at different frequency levels are considered. The table 6 will shows the variation of exciting frequencies under 

different speeding conditions. 

Table 6. Variation of Exciting Frequency with Vehicle Speed 
Speed 

(Kmph) 

Frequency Hz 

(at WRI = 1m) 

Frequency Hz 

(at WRI = 2m) 

Frequency Hz 

(at WRI = 3m) 

Frequency Hz 

(at WRI = 4m) 

Frequency Hz 

(at WRI = 5m) 

20 5.5500 2.77 1.8518 1.3888 1.11111 

40 11.1111 5.54 3.7037 2.7777 2.22222 

60 16.6666 8.31 5.5555 4.1664 3.33333 

80 22.2222 11.08 7.4074 5.5552 4.44444 

100 27.7777 13.85 9.2593 6.9440 5.55555 

120 33.3333 16.66 11.1111 8.3333 6.66666 

140 38.8888 19.44 12.9630 9.7222 7.77777 

 
 

V. GEOMETRICAL MODELING OF LEAF SPRING 

CATIA software is used to design the geometric model of the leaf spring. Using appropriate features of the 

software it is modeled and are shown in Figs 5 and 6. 

 

  
Fig.5 Full model of leaf spring    Fig. 6 front eye the of leaf spring 

 

VI. ANALYSIS OF LEAF SPRING 

 

For a given leaf spring specifications, the static analysis is performed using ANSYS software. The modal analysis 

determines the natural frequencies and mode shapes to assess the behavior of the leaf spring with various parametric 

combinations. Static analysis involves discritization called meshing, boundary conditions, loading. However modal 

analysis does not need loading. The element considered for analysis is Solid 92: 3D- 10 Node Tetrahedral Structural solid 

with Rotations as shown if Fig 7. Solid92 has a quadratic displacement behaviour and is well suited to model irregular 

meshes. Besides structured nodes, orthotropic material properties are considered. Nodes, degrees of freedom, real 

constants, material properties, surface loads, body loads with appropriate assumptions and restrictions are defined. The free 

meshing condition is considered as the leaf spring has shape curves.  
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Fig. 7 Solid 92 3D- 10 Node Tetrahedral Structural solid with Rotations 

 

The boundary conditions are given based on the assumptions. The ends of the leaf spring are formed in the 

shape of an eye. The front eye of the leaf spring is coupled directly with a pin to the frame so that the eye can rotate 

freely about the pin but no translation is occurred. The rear eye of the spring is connected to the shackle which is a 

flexible link; the other end of the shackle is connected to the frame of the vehicle. The rear eye of the leaf spring has the 

flexibility to slide along the Y-direction when load applied on the spring and also it can rotate about the pin. The link 

oscillates during load applied and removed. Therefore the nodes of rear eye of the leaf spring are constrained in all 

translational degrees of freedom, and constrained the two rotational degrees of freedom. So the front eye is constrained as 

UX, UY, UZ, ROTY, ROTZ and the nodes of rear eye are constrained as UX, UZ, ROTY, ROTZ. Fig shows the 

boundary conditions of the leaf spring. 

 

During static analysis, to determine the allowable stresses, the load applied from bottom surface of the leaf 

spring as it is mounted on the axle of the leaf spring. Hence, all the leaves are bounded together with the center bolt. Thus 

the entire load is concentrated around the centre bolt of the leaf spring. The load is distributed equally by all the nodes 

associated with the center bolt. The load is applied along FZ direction as shown in Fig. 7 and Fig.8. To apply load, it is 

necessary to select the circumference of the bolt hole and consequently the nodes associated with it. It is necessary to 

observe the number of nodes associated with the circumference of the bolt hole, because the applied load need to divide 

with the number of nodes associated with the circumference of the center bolt. The variation of Von-Mises stresses is 

shown in Table 7 under different loading conditions. The stresses are increased as the load increases.  

 

Modal analysis is carried out to decide the natural frequencies and mode shapes of the leaf spring. Modal 

analysis is performed for various parametric combinations of the leaf spring. The parameters are camber, span, thickness, 

number of leaves. Here, camber varies from 80 to 110 mm, span varies from 1220 to 1420 mm, thickness varies from 7 

to 10 mm and number of leaves varies from 9 to 12 keeping width is constant. Modal analysis need only boundary 

conditions, it is not associated with the loads apply, because natural frequencies are resulted from the free vibrations. The 

boundary conditions are same as in the case of static analysis. 

 

Table 7. Variation of Von-Mises stress with load 

 

Load (N) Von – Mises Stresses 

(N / mm
2
) 

1000 50.095 

2000 101.856 

3000 150.428 

4000 200.712 

5000 254.640 

6000 305.150 

7000 356.535 

8000 407.469 

9000 458.124 

10000 509.928 

11000 560.270 

12000 611.204 

13000 662.064 

14000 713.071 

15000 764.005 
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Fig.7 Meshing, Boundary conditions and loading of leaf spring Fig. 8 Deformed and undeformed shape of leaf spring 

 

VII. RESULTS AND DISCUSSION 

A. Static Analysis 

Static analysis is performed to decide the Von-Mises stress by using ANSYS software and are compared with bending 

stresses obtained via analytical approach at various loads. The Table 8 shows the assessment of stresses obtained from 

the computational and mathematical approaches. It is seen that the yield stress of the material is 1680 N/mm
2
 . By 

considering the factor of safety 3 to 3.5, it is obvious that the allowable design stress is 480 to 560 N/mm
2 

. So the 

corresponding loads are 8000 to 10000 N. Therefore it is concluded that the maximum safe pay load for the given 

specification of the leaf spring is 10000N. 

From Figure 8.1 and Figure 8.11, it is obvious that maximum stress developed is at inner side of the eye sections 

i.e. the red color indicates maximum stress, because constraints applied at interior of the eyes. Since eyes are subjected to 

maximum stress, care must be taken in eye design and fabrication and material selection. The material must have good 

ductility, resilience and toughness to avoid sudden fracture. 

 

Table 8. Comparison between Theoretical and ANSYS for Von-Mises Stress 

Load (N) 
Von – Mises Stresses (N / mm2) 

Theoretical ANSYS 

1000 48.502 50.095 

2000 97.005 101.856 

3000 145.075 150.428 

4000 194.010 200.712 

5000 242.512 254.640 

6000 291.015 305.585 

7000 339.517 356.565 

8000 388.020 407.469 

9000 436.520 458.124 

10000 485.025 509.928 

11000 533.527 560.270 

12000 582.030 611.204 

13000 630.532 662.264 

14000 679.035 703.071 

15000 727.537 764.005 

 

From the analysis of theoretical and ANSYS, the allowable design stress is found in between the loads from 

8000 to 10000 N, the near corresponding safe loads are given Table 9. 

 

Table 9. Comparison between Theoretical and ANSYS for allowable design stresses 

Load (N) 
Von – Mises Stresses (N / mm2) 

Theoretical ANSYS 

9500  460.770 481.916 

9700 470.470 494.565 

9900 480.174 504.243 

 

From Figure 9, 10 and 11, it is resulted that the maximum stress developed is at inner side of the eye sections i.e. 

the red color indicates maximum stress, because constraints applied at interior of the eyes. Since eyes are subjected to 
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maximum stress, care must be taken in eye design, fabrication and material selection. The material must have good 

ductility, resilience and toughness to avoid sudden fracture. The theoretical and ANSYS results are almost same with a 

little variation. The ANSYS results are provided in the Figures 14 to 15. 

 

 

 
Fig. 10 Load Vs Von – Mises Stresses (The & ANSYS)  Fig. 11 Load Vs Von – Mises Stresses (Theoritical) 

 
Fig. 12 Load Vs Von – Mises Stresses (ANSYS) Fig. 13 Safe design conditions – Load vs Stress 

 

 
Fig. 14 Von-mises Stress contour plot of Front eye of leaf spring Fig. 15 Von-mises Stress contour plot of Rear eye of leaf spring 

 

B. Dynamic Analysis 

The width is fixed for leaf spring and other parameters namely thickness, camber, span and numbers of leaves are 

varied. Ten modes are considered for analysis. Variations of natural frequencies with spring parameters are studied. 
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(i) Variation of natural frequency with span 
The span is varied from 1120 mm to 1420 mm and corresponding natural frequencies are studied and presented in 

Table10. The other parameters Camber, thickness and no of leaves are constants and are 80 mm, 7 mm and 10nos 

respectively. When span increases, the spring becomes soft and hence the natural frequency decreases. Every three 

modes are in one set of range. There is a considerable gap between mode3 to mode4, mode6 to mode7 and mode9 to 

mode10. It is observed from the Fig. 16 that the frequency value rapidly decreases with the increase of span for mode10 

compared to remaining modes. 

Table 10 variation of natural frequency with Span 

Frequency 

(Hz) at 

Span (mm) 

1120 mm 1220 mm 1320 mm 1420 mm 

Mode 1 2.464 2.362 2.038 1.741 

Mode 2 3.700 3.624 3.053 2.603 

Mode 3 7.168 6.874 5.916 5.042 

Mode 4 14.409 14.240 12.192 10.416 

Mode 5 15.553 15.412 14.862 12.995 

Mode 6 18.224 17.652 15.246 13.413 

Mode 7 26.208 25.596 23.181 20.292 

Mode 8 31.377 31.126 26.798 22.968 

Mode 9 31.690 31.149 27.889 24.651 

Mode 10 46.567 45.532 39.470 33.549 

 

 
Fig 16 Variation of natural frequency with span 

 

(ii) Variation of natural frequency with camber 
The camber is varied from 80 mm to 110 mm and corresponding natural frequencies are studied and presented in 

Table11. The other parameters span, thickness and no of leaves are constants and are 1220 mm, 7 mm and 10nos 

respectively. When camber increases, the spring becomes stiff and hence the natural frequency increases. Every three 

modes are almost in one set of range. There is a considerable gap between mode3 to mode4, mode6 to mode 7 and mode 

9 to mode 10. It is observed from the Fig.17 that the increase of frequency value with the increase of camber is very high 

for mode10 compared to remaining modes. 

Table 11 variation of natural frequency with Camber 

Frequency 

(Hz) at 

Camber (mm) 

80 90 100 110 

Mode 1 2.362 2.344 2.344 2.414 

Mode 2 3.624 3.527 3.446 3.571 

Mode 3 6.874 6.791 6.760 7.063 

Mode 4 14.240 14.107 13.988 14.361 

Mode 5 15.412 16.006 16.642 15.395 

Mode 6 17.652 17.506 17.458 18.122 

Mode 7 25.596 25.625 25.741 27.007 

Mode 8 31.126 30.895 30.702 30.557 

Mode 9 31.149 31.215 31.391 31.667 

Mode 10 45.532 45.241 45.109 45.915 
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Fig 17 Variation of natural frequency with camber 

 

(iii) Variation of natural frequency with thickness 
The thickness is varied from 7 mm to 10 mm and corresponding natural frequencies are studied and presented in 

Table12. The other parameters span, camber and no of leaves are constants and are 1220 mm, 80 mm and 10 nos 

respectively. Figure 18 shows the variation of natural frequency with thickness of the spring. When thickness increases 

the natural frequency also increases. Its natural frequency increases like variation of natural frequency with camber, but 

with thickness the natural frequency increasing rate is lesser than that of variation of natural frequency with camber. 

Every three modes are almost in one set of range. There is a considerable gap between mode3 to mode4, mode6 to mode7 

and mode9 to mode10.It is observed from Fig. 18 that the increase of frequency value with the increase of thickness is 

very high for mode9 and mode10 compared to remaining modes. 

 

Table 12 variation of natural frequency with Thickness 

Frequency 

(Hz) at 

Thickness (mm) 

7 8 9 10 

Mode 1 2.362 2.744 2.945 3.270 
Mode 2 3.624 3.697 3.650 3.702 
Mode 3 6.874 7.950 8.502 9.403 
Mode 4 14.240 14.293 14.092 14.116 
Mode 5 15.412 15.710 15.656 15.736 
Mode 6 17.652 20.244 21.716 23.691 
Mode 7 25.596 26.669 26.678 27.275 
Mode 8 31.126 31.233 30.955 31.004 
Mode 9 31.149 34.630 37.249 40.714 

Mode 10 45.532 51.608 51.091 51.025 
 

 
Fig 18 Variation of natural frequency with Thickness 
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(iv) Variation of natural frequency with number of leaves 
Number of leaves is varied from 9 to 12 and corresponding natural frequencies are studied and presented in Table13. 

The other parameters span, camber and thickness are constants and are 1220 mm, 100 mm and 7 mm respectively. Figure 

19 shows the variation of natural frequency with number of leaves of the spring. Even though the number of leaves 

increases there is no considerable increase in natural frequency, it is almost constant. It is observed from the Fig.19 every 

three modes are in gradual increment, there is considerable increase in natural frequency from mode3 to mode4, there is 

much increase in natural frequency from mode6 to mode7 and there is very much in increase in natural frequency from 

mode9 to mode10. 

Table 13 variation of natural frequency with Number of leaves 

Frequency 

(Hz) at 

Number of leaves 

9 10 11 12 

Mode 1 2.240 2.362 2.527 2.559 

Mode 2 3.571 3.624 3.440 3.285 

Mode 3 6.506 6.874 7.262 7.301 

Mode 4 14.202 14.240 14.006 13.720 

Mode 5 16.473 15.412 16.410 15.887 

Mode 6 17.044 17.652 18.873 19.360 

Mode 7 25.060 25.596 26.346 26.188 

Mode 8 30.567 31.126 30.789 30.446 

Mode 9 30.906 31.149 33.002 33.751 

Mode 10 42.669 45.532 48.544 50.096 

 
Fig 19 Variation of natural frequency with No. of leaves 

C. Mode shapes 

The mode shapes for modes 1,3 & 10 and for different parameters like Camber, Span, Thickness of leaves and number of 

leaves are presented in the following Figures 20 to 28. 

   
Fig. 20 Mode 1 (Camber 80 mm, Span 1220 mm)  Fig. 21 Mode 3 (Camber 80 mm, Span 1220 mm) 
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Fig. 22 Mode 10 (Camber 80 mm, Span 1220 mm)  Fig. 23 Mode 1 (Thickness 8 mm) 

 

 

  
Fig. 24 Mode 3 (Thickness 8 mm)    Fig. 25 Mode 7 (Thickness 8 mm) 

 

   
 

Fig. 26 Mode 1 (Number of leaves 10)   Fig. 27 Mode 3 (Number of leaves 10) 
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Fig. 28 Mode 10 ( Number of leaves 10) 

 

D. Variation of Exciting Frequency with Vehicle Speed 

The variation of exciting frequency is studied with varying vehicle speeds for assumed width of road Irregularity.  At low 

speeds the wheel of the vehicle passes over road irregularities and moves up and down to the same extent and the frequency 

induced is less. . If the speed increases and the change in the profile of the road irregularity are sudden, then the movement 

of the body and the rise of the axles which are attached to the leaf spring are opposed by the value of their own inertia. 

Hence, the frequency induced also increases. The exciting frequency is very high for the lower value of road irregularity 

width, because of sudden width. 

  

It is noted that the some of the excitation frequencies are very close to natural frequencies of the leaf spring, but they are not 

exactly matched, hence no resonance will takes place. 

 

Table 14. Variation of Exciting Frequency with Vehicle Speed 

 
Speed 

(Kmph) 

Frequency Hz 

(at WRI = 1m) 

Frequency Hz 

(at WRI = 2m) 

Frequency Hz 

(at WRI = 3m) 

Frequency Hz 

(at WRI = 4m) 

Frequency Hz 

(at WRI = 5m) 

20 5.5500 2.77 1.8518 1.3888 1.11111 

40 11.1111 5.54 3.7037 2.7777 2.22222 

60 16.6666 8.31 5.5555 4.1664 3.33333 

80 22.2222 11.08 7.4074 5.5552 4.44444 

100 27.7777 13.85 9.2593 6.9440 5.55555 

120 33.3333 16.66 11.1111 8.3333 6.66666 

140 38.8890 19.44 12.9630 9.7222 7.77777 
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Fig 8.17 variation of Excitation frequency with vehicle speed (WRI = width of road irregularity in meters) 

VIII. CONCLUSIONS AND FUTURE SCOPE OF WORK 

 

It is necessary to estimate the life of a vehicle when it is subjected to varying loading conditions. The natural 

frequency, exiting frequencies may cause the vehicle damaged. This paper mainly focuses on the payload conditions on 

leaf spring which offers resistance against the vibration. The bending stress, Von-Mises stresses are computed at different 

loads with varying parameters such as span, camber, thickness and number of leaves of the leaf spring. The effect of 

these parameters is studied to get the optimal conditions for safe design of leaf spring. The following conclusions are 

made. 

1. The Leaf spring has been modeled using solid tetrahedron 10 node element. 

2. The maximum safe load is 9900 N is obtained for the given specification of the leaf spring from the static 

analysis. 

3. In model analysis, the leaf spring width is kept as constant and variation of natural frequency with leaf 

thickness, span, camber and numbers of leafs are studied. 

4. It is observed from the present work 

a. The natural frequency increases with the increase of thickness, number of leaves as well as camber, and 

decreases with decrease of thickness of leaves as well as camber. 

b. The natural frequency decreases with increase of span, and increases with decrease of span. 

c. The natural frequency almost constant with number of leaves. 

5. The natural frequencies of various parametric combinations are compared with the excitation frequency for 

different road irregularities. 

6. This study concludes that it is advisable to operate the vehicle such that its excitation frequency does not match 

the natural frequencies i.e. the excitation frequency should fall between any two natural frequencies of the leaf 

spring. 

7. Sensors and microprocessors can be used to achieve the optimum speed for comfortable, low vibration journey. 

8. In this work no contact elements are considered only nodal coupling has taken, instead of nodal coupling contact 

elements can be considered.   

9. The composite material may be considered instead of steel so that the durability of the vehicle may be enhanced 

with low maintenance. 
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