

International Journal of Advance Engineering and Research Development

Volume 4, Issue 7, July -2017

ASSESSMENT OF DROUGHT - USING NONLINEAR AGGREGATED DROUGHT INDEX IN ARTIFIICAL NEURAL NETWORK

Ms. Chaitaly Joshi^[1]

ME (WRE- Civil engineering)

Student YTCEM, Mumbai

Ms. Seema A Jagtap^[2]

HOD Dept of Civil Engineering, Thakur college of
engineering, Mumbai

e-ISSN (O): 2348-4470

p-ISSN (P): 2348-6406

Abstract:

Drought, is caused by the absence of rain is a natural phenomenon. This has its hazardous impacts on human life, industries, environment, and community in general. Understanding drought is thus a very important process considering the present erratic rainfall scenario. It is observed that Maharashtra state has been suffering from lack of rainfall for over two decades, thus drought assessment has become a serious concern in the area. Whenever a drought event and resultant disaster occur, governments and donors follow impact assessments, and response, recovery and reconstruction activities, to return the region or locality to a pre-disaster state. Therefore, it is well recognized that preparedness for drought is the key to the effective mitigation of drought impacts which is becoming more important for water resources managers to handle the challenges in water resources management. To reduce such after event recovery, it is very essential that drought is characterized at the very initial stages and all the required measures are taken beforehand to supply proper water to all the people. There are many methods with which one can assess drought. In this paper, we aim to develop drought forecasting tools by using software's such as SPSS and ANN. The project aims to focus at Manjhara river basin of Latur District in Maharashtra. A new drought index called Nonlinear Aggregated Drought Index (NADI) was established and a time series NADI time series was created using SPSS (Statistical Package for Social Science) software. In order to develop NADI time series the raw data was converted into a series of transformed variables in order to

generate Principal components of various months. This data was then put in ANN software and assessment was done. Using this time series, forecast up to 6 months of lead time is possible.

Keywords: -drought, drought assessment, drought index, artificial neural network, SPSS, Nonlinear aggregated drought index; Manjhara river basin, Latur, Maharashtra

Introduction:-Drought is a natural phenomenon, indicating lack of rainfall. A region can be said to drought prone if it persistently receives little or no rainfall to meet the demands of people in general. The consequences of drought affected areas are well known to us. Whenever a drought event and resultant disaster occur, governments and donors follow impact assessments, and response, recovery and reconstruction activities, to return the region or locality to a pre-disaster state. Thus, it is of prime importance that we plan our water resources in such a way that water is available to the end user in all seasons regardless of the spatial and temporal variations in rainfall.

This study aims at forming a model that will enable us to assess drought using certain soft computation techniques and development of drought indices. Drought indices or drought index is a numerical value expressed as a function of hydro meteorological parameters like rainfall, streamflow, evapotranspiration etc. it helps in formulating raw data to certain values so as to assist in decision making. With drought indices one can predict different climatic events likely to occur in a particular

region, giving us an indication of climatic dryness prevailing in the area due to lack of precipitation. We can also predict that whether the climatic dryness is due to agricultural impacts like loss in moisture of soil or due to lower reservoir levels adding to hydrological impacts of drought. Also, drought indices can be classified based upon the type of technology used to evaluate it. The main objective of this study was to develop a drought assessment model using a soft computing tool with the help of a nonlinear aggregated drought index. Calculating nonlinear aggregates drought index (NADI) for Takli rain gauge station for Manjhara river basin, Latur, Maharashtra is one of the major objectives of this paper. Putting this NADI time series in ANN to assess drought was the second major objective of this paper. As soft computing tools provide easy and hands on reliable solutions compared to hard computing techniques, working on one or more soft computing methods is also an objective of the present work.

Study Area:-

The area under consideration is the Takli rain gauge station of Manjhara river basin of Latur district of Maharashtra. The idea behind selection of this station is the drought history of Latur district. Latur has been observing drought for more than two decades and thus proper drought assessment is of utmost importance to have a stable lifestyle in the district. Long term hydrometeorological data (36years) for Takli station in the basin was thus collect to commence calculation of NADI.

The Godavari River is 1465km long and is one of the longest flowing rivers in India. The drainage basin of the river is present in six states of India: Chhattisgarh, Maharashtra, Andhra Pradesh, Madhya Pradesh, Karnataka, and Orissa.

For our study we have taken the Manjara tributary of the Godavari river. The Manjara River is one of the major tributaries of Godavari, which originates the Balaghat Range of hills in the Beed district of Maharashtra at an altitude of about 823 m. The river flows in a general east and south easterly direction for 512 km covering areas of Maharashtra, some parts of Mysore and Andhra Pradesh. The river then changes its direction and flows for 75km in Northward direction and

enters Andhra Pradesh. In Nizamabad district of Andhra Pradesh it flows down for more 102 km and forms a boundary between Maharashtra and Andhra Pradesh. The total length of the river from the source to its confluence with the Godavari at an altitude of 323 m is about 724 km. The catchment area of the Manjara River including its tributaries is 30,844 km2 lying in a zone which gets about 725 mm of rain annually.

Entire latur district receives its major portion of drinking water from Manjara River. Due to improper implementation of water management strategies, the entire city ran out of water in the drought during 2010.

The temperatures in the district vary a lot temporally. The annual temperature is in range of 13°C to 41°C. Talking about rainfall, the annual rainfall in this district is 725mm. monthly rainfall may vary from 9.0 to 693mm/month. The district also experienced severe earthquake of magnitude 6.5 of Richter scale in the year of 1993 which caused life of more than 10,000 people and left more than 30,000 people injured.

NADI time series formation:-

The process of formation of a NADI time series starts with selecting the area for study and obtaining long hydro meteorological data (in this case 36 years data of rainfall and streamflow). Next, the data is segregated month wise for computation of principal components (PC's) (here we have taken data from the month of May to October to Takli). Then using SPSS, the PC's are computed and NADI value is formed by dividing the PC with standard deviation. The NADI values are then rearranged in ascending chronology to form a NADI time series. Based upon the NADI values, drought thresholds are determined for drought classification.

In order to calculate principal components, SPSS software was used. Using this software, we could solve nonlinear principal component analysis and arrive at PC's (Principal Components) for each month (from May1976 to October 2011). The Nonlinear Aggregated Drought Indices (NADI) were calculated thereafter using the formulae

NADIa,b = Ya1,b /
$$\sigma$$

Where, NADIa,b is the NADI value in year a for month b; Ya1b is the principal component PC1 derived from

SPSS for month b in the year a and σ is the standard		0.00	0.00
deviation for all years.		24.53	0.00
So, NADI _{1976, May} = PC1 _{1976, May} / σ		22.40	0.00
means NADI for the month of May in 1976 is equal to		18.60	0.00
		3.60	0.00
PC1(derived by SPSS) of May,1976 divided by σ the		57.60	0.00
standard deviation for all years.	$H_{MAY} =$	168.40	14.02
From SPSS, only PC1 is taken into account as it		42.20	2.13
represents maximum variance. Once computation of		20.20	2.28
NADI series for different months is done, it is rearranged		34.00 40.00	0.00 1.94
into a single NADI time series in ascending order to form		18.40	1.23
a NADI time series as shown in sample calculation		4.60	0.00
below.		4.40	12.85
		18.90	0.00
Sample Calculation		122.10	0.00
Let's consider an example to calculate NADI series for		81.00	0.00
the month of May for Takli rain gauge station. The 36		32.60	0.00
years of rainfall(R) and Stream flow (Q) is arranged in a		48.60	0.00
way to form (36x2) matrix. Let's say this matrix is H.		0.00	0.00
this matrix H is then converted into transformed variable		0.00	0.00
matrix Q using optimal transformation of variables. The		0.00	0.00
Q matrix (36x2) is then used in CATPCA module of		98.40	0.00
		0.00	0.00
SPSS to generate correlation matrix and eigen vector		0.00	0.00
matrix (2x2) using the first PC (PC1)		0.00	0.00
The relationship between PC and the raw data is		0.00 0.00	0.00 0.14
established by the equation		0.00	0.14
Y = Q.E		-0.5885	-0.72222
Where, Y= (A x B) matrix in which A=number of		-0.57471	-0.72222
observation and B= number of variables	-0.08094	-0.72222	
H = the transformed matrix (A x B) and E is the eigen		0.37014	-0.72222
vector matrix (B x B) formulated by PC1 of component	-0.62479	-0.72222	
	-0.45911	-0.72222	
loadings in CATPCA module of SPSS software.	-0.04914	-0.72222	
The NADI value is the obtained by dividing this Y by its	-0.58359	-0.72222	
standard deviation		-0.72222	-0.72222
$NADI = Y / \sigma$		-0.07189	-0.72222
The NADI values for all months are calculated in similar		-0.12839	-0.72222
manner and rearranged in asceding order to form a single		-0.22913	-0.72222
NADI time series.		-0.62679	-0.72222
Based on the above explanation, H, Q and Ematrix for		0.804767	-0.72222
May are as shown below	$Q_{MAY} =$	3.742105	-0.35066
· · · · · · · · · · · · · · · · · · ·		0.396509	-0.66569
5.04 0.00		-0.18672	-0.66185
5.56 0.00		0.179125	-0.72222
24.19 0.00		0.338186	-0.67073
41.21 0.00 3.68 0.00		-0.23444	-0.68971
9.93 0.00		-0.60028	-0.72222
25.39 0.00		-0.60558	-0.38155
5.23 0.00		-0.22118	-0.72222
0.25			

2.51468	-0.72222
1.425107	-0.72222
0.14201	-0.72222
0.566175	-0.72222
-0.72222	-0.72222
-0.72222	-0.72222
-0.72222	-0.72222
1.886386	-0.72222
-0.72222	-0.72222
-0.72222	-0.72222
-0.72222	-0.72222
-0.72222	-0.72222
-0.72222	-0.71845

-1.1425592 -1.13957182

The NADI value is then obtained by dividing this Y by its standard deviation, NADI = Y / σ as is as below

Putting NADI series into ANN:-

AS stated earlier in order to assess the drought conditions ANN was used. The first step here is selection of appropriate input parameters for the software tool. The second step involves model development and calibration of hidden neurons. Finally the model is complete by investigating some model performances to understand how the software works.

 $E_{MAY} =$ 0.79 0.792

> -1.0369194 -1.02602081 -0.63594609 -0.27959154 -1.06558314 -0.93469494 -0.61082241 -1.03303983 -1.1425592 -0.62879269 -0.67343344 -0.75301728 -1.06716399 0.063764183 2.67853972 -0.2139864 -0.67169157

-1.265465611 -1.252164883 -0.776114234 -0.341215988 -1.300447097 -1.140709985 -0.745453083 -1.26073095 -1.394389368 -0.767384161 -0.821864135 -0.918988951 -1.302376384 0.077818373 NADI MAY= 3.268913588 -0.2611509 -0.819738339 -0.525377854 -0.322247568 -0.892673083 -1.276817222 -0.952641404 -0.911321203 1.726384333 0.675902768 -0.561160681 -0.152214086 -1.394389368 -1.394389368 -1.394389368 1.120632189 -1.394389368

 $Y_{MAY} =$ -0.43049332 -0.26404886 -0.73145412 -1.04622088 -0.78059201 -0.74673434 1.414595058 0.553833058 -0.45981368 -0.12472385 -1.1425592 -1.1425592 -1.1425592

0.918243248

-1.1425592

-1.1425592

- -1.394389368
- -1.394389368
- -1.394389368
- -1.390743537

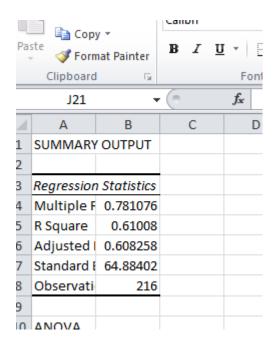
Likewise, NADI for other months can be calculated and arranged in chronological order to form a NADI time series as below

.

In order to forecast NADI value several lead months ahead, NADI values of all previous months are put as input and ANN with back propagation is used

On the same theory a sample value calculation for the month of May is as shown

Result:-Here, using ANN it can said that after 3 iterations, the value of R is 0.96 and MSE is 0.08 which is favorable and satisfies the basic requirement of ANN. Likewise, all other stations and respective months / years can be worked out. The Mat lab ANN software was used to compute all the values for assessment of drought.


NADI TIME SERIES FOR TAKLI RAINGAUGE STATION

	MAY	JUNE	JULY	AUG	SEPT	ОСТ
1976	-1.26547	-0.10352	0.39641	-0.05914	-0.89009	-0.82636
1977	-1.25216	-0.12406	-0.34289	-0.57757	-1.06618	-0.35515
1978	-0.77611	2.039467	0.369546	-0.6962	-0.63108	-0.10073
1979	-0.34122	-0.2584	-0.73204	-0.86655	0.570207	-0.78144
1980	-1.30045	2.002305	-0.86351	0.127519	-0.31019	-0.77916
1981	-1.14071	0.110438	-0.58988	-0.87218	0.759276	0.265253
1982	-0.74545	0.119174	-0.4201	-1.08461	-0.11685	-0.68129
1983	-1.26073	-0.54377	1.003409	1.645819	2.275529	2.762399
1984	-1.39439	-0.9651	0.030498	-1.14772	-0.41541	-0.06138
1985	-0.76738	-0.07893	-0.39471	-1.0902	-0.61743	-0.07232
1986	-0.82186	-1.05976	-0.96499	-0.31637	-0.95743	-0.84321
1987	-0.91899	0.253428	-0.17902	0.085481	-1.08281	0.473777
1988	-1.30238	0.526794	0.280307	1.157639	3.140828	-0.47587
1989	0.077818	0.453193	3.274259	0.278186	0.672168	-0.44058
1990	3.268914	3.167871	-0.29105	2.142127	-0.21874	2.490472
1991	-0.26115	0.43292	1.951891	-0.83103	-0.92826	-0.86178
1992	-0.81974	0.328782	-0.92148	-0.03388	-0.11697	-0.37578
1993	-0.52538	-0.99833	-0.49975	-0.39856	-0.71699	-0.07606
1994	-0.32225	0.13889	-0.71323	-0.86784	-1.01856	0.079264
1995	-0.89267	0.865404	0.521247	-0.69215	-0.78946	0.512115
1996	-1.27682	-1.14469	0.559946	0.389932	1.396665	0.523833
1997	-0.95264	-0.35054	-0.28616	-0.73977	-0.38529	-0.22333
1998	-0.91132	-0.39993	1.285789	0.617462	1.581761	3.057439
1999	1.726384	0.240992	-0.79451	0.101184	-0.16421	1.609684
2000	0.675903	0.259124	-0.61606	2.803391	-0.61129	-0.73832
2001	-0.56116	0.186331	-1.10551	-0.09825	0.655427	-0.45301
2002	-0.15221	-0.2254	-0.7587	-0.322	-0.76308	-0.44615
2003	-1.39439	-1.52083	-0.16086	-0.13199	-0.92462	-0.78439
2004	-1.39439	-0.70892	0.207071	-0.92523	-0.61425	-0.45162
2005	-1.39439	-1.52083	0.680178	-0.5999	0.315425	0.684772
2006	1.120632	0.417274	-0.76382	0.191563	0.665868	0.029379

2007	-1.39439	1.392368	-0.83656	-0.75667	0.589299	-0.80353
2008	-1.39439	-0.90233	-0.72631	-0.14997	1.323633	-0.59806
2009	-1.39439	-0.15089	-0.93382	0.156488	-0.46861	-0.32663
2010	-1.39439	-0.75727	2.14265	2.400965	0.323622	-0.35252
2011	-1.39074	-1.12126	1.191778	1.160026	-0.46192	-0.57975

■ R **⋈** MSE 💑 Samples Training 2.44470e-3 9.99120e-1 26 4.69685e-1 -2.70404e-1 Validation: Testing: 1.86716e-0 8.18317e-1 Plot Fit Plot Error Histogram Plot Regression Mean Squared Error is the average squared difference between outputs and targets. Lower values are better. Zero means no error.

The same values of input and output data was put in excel to form a regression. The output obtained by MS-Excel is as follows

In Excel, it can be seen that the value for R is equal to 0.79 and MSE is 0.62. both these values are notfavourable. The ideal range of R is between 0 to 1 where 1 indicates excellent forecasting while 0 indicates

poor forecasting. On the other hand, the range for MSE is also between 0 to 1 where 0 indicates best fit while 1 indicates poor performance of the model. In short, large R value (close to 1) and low MSE values (as good as zero) indicate a good model. So, comparing both ANN and Excel it is clear that for this particular station, the output achieved by ANN is more superior and should be taken into consideration. The forecast values achieved by ANN will be more precise and accurate.

Conclusion:-Thus we can conclude that in order to provide water to user even during dry season, proper assessment of drought is necessary. This will not only help us to take precautionary measures at the initial stage, but will also help us predict and understand the behaviour of changes in drought patterns. Many tools are available to assess a given situation for dry period. We can classify drought as per hydrological drought, agricultural drought and metrological drought, depending upon the type of drought, drought assessment can be done. Drought assessment helps us in both past and future; we can understand and study the drought patterns in retrospect of a given region and we can also study the prospective behaviour of rainfall / drought pattern.

The main objective of this study was to develop a drought assessment model using a soft computing tool with the help of a nonlinear aggregated drought index. Calculating nonlinear aggregates drought index (NADI) for Takli rain gauge station for Manjhara river basin, Latur, Maharashtra and TO put this NADI time series in ANN to assess drought.

References:-

- Barros, A.P. and Bowden, G.J., 2008. Toward long-lead operational forecasts of drought: An experimental study in the Murray-Darling River Basin, Journal of Hydrology 357 (3-4), 349-367.
- Beran, M.A. and Rodier, J.A., 1985. Hydrological aspects of drought, UNESCOWMO, Studies and Reports in Hydrology, No. 39, UNESCO, Paris, France.
- Bhuiyan, C., 2004. Various drought indices for monitoring drought condition in Aravalli Terrain of India, in Proceedings of the XXth ISPRS Congress, Istanbul, Turkey, 12–23.

- John A. Keyantash and John A. Dracup, 'An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage', water resources research, VOL. 40, W09304, doi:10.1029/2003WR002610, 2004
- 5. Mishra and Desai, 'Drought forecasting using stochastic models', Stoch Environ Res Risk Assess (2005) 19: 326–339 DOI 10.1007/s00477-005-0238-
- Shishutosh Barua, 'Drought Assessment and Forecasting Using a Nonlinear Aggregated Drought Index', (ASCE) HE.1943-5584.0000574. © 2012 American Society of Civil Engineers