

Scientific Journal of Impact Factor (SJIF): 5.71

International Journal of Advance Engineering and Research Development

Volume 5, Issue 05, May -2018

DESIGN AND FABRICATION OF AUTOMATIC TABLET STRIPES COUNTING & SHIFTING MECHANISM IN BELT CONVEYOR.

Kunal U. Shinde¹, Pratik P. Patil², Vijay G. Nandan³, Rahul V. Jha⁴, Ziya R. Khan⁵

¹Mechanical Engineering, Sandip Institute of Engineering and Management, mahiravni, Nashik

²Mechanical Engineering, Sandip Institute of Engineering and Management, mahiravni, Nashik

³ Mechanical Engineering, Sandip Institute of Engineering and Management, mahiravni, Nashik

⁴ Mechanical Engineering, Sandip Institute of Engineering and Management, mahiravni, Nashik

⁵Mechanical Engineering, Sandip Institute of Engineering and Management, mahiravni, Nashik

Abstract: The applications of conveyer are increasing day by day in the manufacturing industries due to its flexibility and accuracy in material handling. Industries like packaging and food processing uses conveyer for the rapid production and less power utilization in material handling. In general, only a single type of object like tablets, bottles or trays are monitored and controlled on a single conveyor in pharmaceutical industries. The trays or boxes on the conveyor are to be stopped at the required station and material to be filled in the trays on conveyor. This can be done using the induction type proximity sensors and counters placed at different positions in the system. The IR sensor is used for safety as interlock the material handling system. In given system, we can do the design and fabrication of automatic tablet counting & shifting mechanism in belt conveyor used in the packaging & transportation system in tablet packaging for pharmaceutical industries. The number of trays/boxes to be filled by tablets can be transfer by using arrangements of proximity sensors & pneumatic locking along with counting system. The output packaging fixed can be easily altered in between the process.

Keywords: tablets, packaging, counter, pneumatics, belt conveyer.

INTRODUCTION

A conveyor system is a common piece of mechanical handling equipment that moves materials from one location to another. Conveyor systems are commonly used in many industries, including the automotive, agricultural, computer, electronic, food processing, aerospace, pharmaceutical, chemical, bottling and canning, print finishing and packaging. Although a wide variety of materials can be conveyed, some of the most common include food items such as beans and nuts, bottles and cans, automotive components, scrap metal, pills and powders, wood and furniture and grain and animal feed. Many factors are important in the accurate selection of a conveyor system. It is important to know how the conveyor system will be used beforehand. Some individual areas that are helpful to consider are the required conveyor operations, such as transportation, accumulation and sorting, the material sizes, weights and shapes and where the loading and pickup points need.

Conveyor provides one of the most versatile & economical means of moving product conveyor can quickly move large quantities of items in virtually any direction with a minimum of effort & expense. They can use in both permanent & portable applications. In existing design, there is scope of automation & process optimization of this conveyer components which will be used for tablets packaging.

Problem definition: In existing system for material handling in tablet packaging & transportation there are time requirement & manpower involves more problems due to manual handling & packaging in small scale pharmaceutical industries. There is only belt conveyer having automation operating by using electronics system but it does not have any provision for counting & box packing arrangements for tablets. so, to overcome this problem we can implement the automatic tablet counting & shifting mechanism in belt conveyor with automation in starting & stopping system.

Objective:

The main objective is to suggest for belt conveyor for material optimization. The following are important points regarding

this objective of study -

Study existing system and its design.

- 1) Geometric modeling of belt conveyor.
- 2) Recommendation of new solution for process optimization.

@IJAERD-2018, All rights Reserved

- 3) To reduce the effort & power consumption during packaging.
- 4) To maintain the accuracy in packaging.
- 5) To develop automation unit, so that m/c can easily be adopted in today's automated packaging plants.
- 6) To make a machine at low cost, low maintenance, low capital investment in less space.
- 7) To perform the most rigid operation with high speed packaging.

LITRATURE REVIEW

S.S. Gaikwad ,in this paper, an attempt is made to reduction in weight of existing roller conveyor by optimizing the critical parts of (e.g. Roller,) conveyor without hampering its structural strength. The existing Roller conveyor designed is considered for this project work. The dimensions being 2200 mm length, 30 inch above ground and inclined at 2 to 4 degree with the ground and the weight to be carried by the conveyor - 280Kg (350 kg with added factor of safety). This is the weight of the largest component to be transported over the conveyor. The conveyor would normally encounter gradually applied loads while the components are lowered by hoist. For reasons of safety, a 'sudden load' is already considered during its design phase. Static analysis of roller of existing conveyor is carried out find out maximum deflection & stress. Then Optimization is carried out by modifying the dimensions of roller .Then analysis of optimized roller are carried out to find out maximum deflection & stress. 29.54 % of weight reduction is achieved due to Optimized design. About 56.18 Kg. weight reduction achieved by optimized design than existing design. Actual physical model is done for validation using optimized design parameters and it is found that the design is working safely.

D.K. Nannaware, in this paper we studied existing conveyor system and optimized critical parts of roller conveyor system like Roller, C-channels for chassis and support, to minimize the overall weight of assembly and material & cost saving. Paper contains geometrical modeling and finite element modeling of existing design and optimized design. Geometrical modeling is done using CATIA V5 and finite modeling was done with the help of ANSYS software .Results shows safe design of optimized design. Optimization gives optimum design for same loading condition with huge amount of weight reduction. Using optimized procedure and using practical available structure 39.26% weight reduction is achieved.

Suhas M. Shinde, the current trend is to provide weight/cost effective products which meet the stringent requirements. The aim of this paper is to study existing conveyor system and optimize the critical parts like roller, shafts, C-channels for chassis and support, to minimize the overall weight of assembly and material saving. Critical parameter which reduces the weight is C channels, roller outer diameter and roller thickness. Though value of deflection, stress is more in case of Optimized design, but it is allowable. 30.931 % of weight reduction due to Optimized design.

Rajratna A. Bhalerao, one of the major equipment in material handling is roller conveyor. As the roller conveyors are not generally subjected to complex state of stress they can be designed by providing higher factor of safety it leads to unnecessarily increase in material cost. This can be reduced effectively by separately designing conveyor part and testing whole assembly for transient and mode shape analysis for critical parts.

Yogesh T. Padwal, a lot of work has been done from years to save weight and cost of applications, it still continuing with great effort. The recent trend is to provide weight or cost effective products which meet severe requirement. The purpose of this paper is to study current conveyor system and optimize the critical parts like roller, shafts, C-channels for chassis and support, to reduce the overall weight of assembly and save the material. Critical parameter which reduces the weight is C-channels, roller outer diameter and roller thickness. 34.931 % of weight reduction due to Optimized design.

S.H. Masood, this paper presents a application of concept of concurrent engineering and the principles of design for manufacturing and design for assembly [4, 5], several critical conveyor parts were investigated for their functionality, material suitability, strength criterion, cost and ease of assembly in the overall conveyor system. The critical parts were modified and redesigned with new shape and geometry, and some with new materials. The improved design methods and the functionality of new conveyor parts were verified and tested on a new test conveyor system designed, manufactured and assembled using the new improved parts.

The improved methodology for design and production of conveyor components is based on the minimization of materials, parts and costs, using the rules of design for manufacture and design for assembly. Results obtained on a test conveyor system verify the benefits of using the improved techniques. The overall material cost was reduced by 19% and the overall assembly cost was reduced by 20% compared to conventional methods.

M. A. Alspaugh, this paper presents latest development in belt conveyor technology & the application of traditional components in non-traditional applications requiring horizontal curves and intermediate drives have changed and expanded belt conveyor possibilities. Examples of complex conveying applications along with the numerical tools required to insure

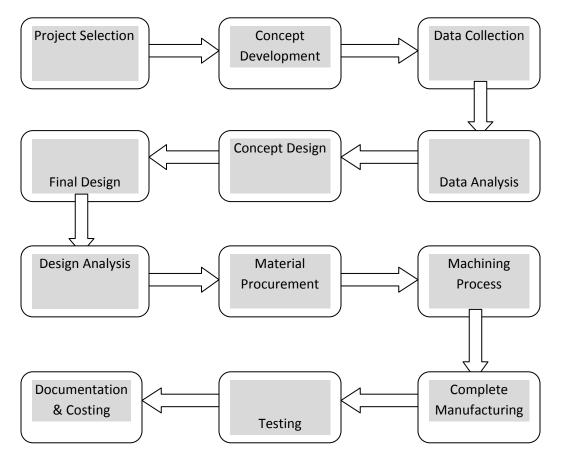
reliability and availability will be reviewed. This paper referenced Henderson PC2 which is one of the longest single flight conventional conveyors in the world at 16.26 km. But a 19.1 km conveyor is under construction in the USA now, and a 23.5 km flight is being designed in Australia. Other conveyors 30-40 km long are being discussed in other parts of the world.

Shirong Zhang, in this paper the improvement of the energy efficiency of belt conveyor systems can be achieved at equipment and operation levels. Specifically, variable speed control, an equipment level intervention, is recommended to improve operation efficiency of belt conveyors. However, the current implementations mostly focus on lower level control loops without operational considerations at the system level. This paper intends to take a model based optimization approach to improve the efficiency of belt conveyors at the operational level. An analytical energy model, originating from ISO 5048, is firstly proposed, which lumps all the parameters into four coefficients. Subsequently, both an off-line and an on-line parameter estimation schemes are applied to identify the new energy model, respectively. Simulation results are presented for the estimates of the four coefficients. Finally, optimization is done to achieve the best operation efficiency of belt conveyors under various constraints. Six optimization problems of a typical belt conveyor system are formulated, respectively, with solutions in simulation for a case study.

Daniel J. Fonseca, this paper Conveyor equipment selection is a complex, and sometimes, tedious task since there are literally hundreds of equipment types and manufacturers to choose from. The expert system approach to conveyor selection provides advantages of unbiased decision making, greater availability, faster response, and reduced cost as compared to human experts. This paper discusses the development of a prototype expert system for industrial conveyor selection. The system, which was developed on Level V Object, provides the user with a list of conveyor solutions for their material handling needs along with a list of suppliers for the suggested conveyor devices. Conveyor types are selected on the basis of a suitability score, which is a measure of the fulfillment of the material handling requirements by the characteristics of the conveyor. The computation of the score is performed through the Weighted Evaluation Method, and the Expected Value Criterion for decision making under risk. The prototype system was successfully validated through two industrial case studies.

Pawar Jyotsna, The aim of this paper is to study existing Belt conveyor system and optimize the critical parts like Roller, Lchannelsand support, to minimize the overall weight of assembly. Paper also involves geometrical and finite element modeling of existing design and optimized design. Geometrical modeling was done using Catia V5R20 and finite modeling done in ANSYS14.0. Results of Linear static, Modal and Transient analysis of existing design and optimized design are compared to prove design is safe. In this paper we work on the roller design and optimization.

Chetan Kothalkar, in this paper an oscillatory type short distance gravity actuated trolley conveyer is conceptualized to be used for conveying light material to and fro to shorter distances. This is a unique conveyer which uses the gravity principle of the gravity conveyor but differs from it . It has two hinged platforms at its ends on which the wheeled trolley rests. To move the trolley, platform is to be raised by an angle more than the limiting angle of friction between the platform and the trolley wheels. Overcoming the static friction, the trolley moves in the direction of the slant and gains momentum.


It covers a distance before coming to to halt, which depends on coefficient of friction trolley mass, energizing length of the platform, angle of inclination etc. Analysis of GAOTC has been done using the computer program. This paper is discussing the studies on length of travel of the trolley using various combinations of the length and friction of the platform with the applications.

Yibowei Moses, in this paper the Mechanical properties of composites based on epoxy resin (ER) filled with metal powders and carbon fibers have been studied. Metal particles (MP) having different particle shapes were used as fillers. The composite preparation conditions allow the formation of a random distribution of metallic particles in the polymer matrix. Carbon fiber (CF) is one of the most useful filler materials in composites, its major use being the manufacture of components in the aerospace, automotive, and leisure industries. Carbon fiber reinforced epoxy (C-E) composites filled with different weight proportions of steel were fabricated. Materials added to the matrix help improve operating properties of a composite. The penetration and hardness behavior of the composites have been studied and were carried out using an Indentation rig and Shore D hardness tester respectively. The epoxy was filled with CF: MP in the ratio 10%:40%, 20%:30%, 30%:20%, and 40%:10%. It was observed that with increasing CF content the surface hardness increases but better resistance to penetration was got with increasing MP.

B.E. Gite, Many new raw materials have been discovered and many ground-breaking composite have been developed, of which not all but some have proved to be a phenomenal success. Carbon fiber is one of these materials, which is usually used in combination with other materials to form a composite. The properties of carbon fiber, such as high stiffness, high tensile strength, low weight, high chemical resistance, high temperature tolerance and low thermal expansion makes them one of the most popular material in civil engineering possessing strength up to five times that of steel and being one-third its weight, we might as well call it 'the superhero' of the material world.

PROCESS FLOW CHART & WORK METHODOLOGY TO SOLVE THE PROBLEM

The below flow chart shows the sequential operation/steps that will be performed during the project process.

WORKING

As shown in figure 1 the machine is consisting of mainly belt conveyer & pneumatic tablet locking system. Initially tablets strips are flows from the belt conveyer & slide down from conveyer to final end destination. The belt conveyer is having belt drive system. When tablets reach to final end destination it passes through proximity switch which locks & counts number of tablet strips. Initially pneumatic locking arrangement of tablet counter gets OFF & when 10 tablets are counted it signal is passes to solenoid valve, so that the compressed air is flows through the solenoid valve to double acting cylinders to unlock the arrangements & counted strips fall on boxes on another secondary conveyer. That procedure is repeated continuously to manage packaging time.

Figure 1. Propose automatic tablet counting & shifting mechanism in belt conveyor

CONCLUSION

The model develop by us fulfill the required objectives that it reduce human efforts & time in packaging operations. Similarly it maintains the accuracy in packaging process. It performed the most rigid operation with high speed packaging in any types of products. After some modifications in this machine develop automation unit for the packaging so that machine can easily be adopted in today's automated plants. Hence we are satisfied with our project work.

REFERENCES

- [1] S.S. Gaikwad, E.N. Aitavade, "Static Analysis Of A Roller Of Gravity Roller Conveyor For Structural Strength & Weight Optimization" PG student, Prof, Mechanical Engineering Department, Tatyasaheb Kore Institute of Engineering and Technology, Warananagar, Tal.-Panhala, Dist.Kolhapur-416113, India, International Journal of Advanced Engineering Technology Vol./IV,Oct-Dec.,2013.
- [2] D.K. Nannaware, R.R. Kharde, "Design and Optimization of Roller Conveyor System" PG student, Pravara Rural Engineering College, Loni, India, Professor, Pravara Rural Engineering College, Loni, India, International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014.
- [3] Suhas M. Shinde, R.B. Patil, "Design and Analysis of a Roller Conveyor System for Weight Optimization and Material Saving" Jawaharlal Nehru College of Engineering, Aurangabad, (M.S.) International Journal on Emerging Technologies Vol.3 Issue 25 April, 2012.

- [4] Mr. Rajratna A. Bhalerao, Dr. R.J. Patil, "Transient and Mode Shape Analysis of Gravity Roller Conveyor for Weight Reduction" Department of Mechanical Engineering. International Journal of Innovative Science, Engineering & Technology(IJISET), Vol. 1 Issue 5, July 2014.
- [5] Yogesh T. Padwal, S.M.Rajmane, "Weight Reduction Technique used for A Roller Conveyor" PG Sudent, Mechanical engineering Dept. Assistant Professor, Mechanical engineering Dept.Bharat Ratna Indira Gandhi College of Engineering, Solapur, (M.S) India. International Journal of Latest Trends in Engineering and Technology (IJLTET), Vol. 3 Issue 1 September 2013.
- [6] S.H. Masood, B. Abbas, E. Shayan A. Kara "An investigation into design and manufacturing of mechanical conveyors Systems for food processing", Springer Verlag London Limited 2004.
- [7] M. A. Alspaugh, "Latest Developments in Belt Conveyor Technology" MINExpo 2004, Las Vegas, NV, USA. September 27, 2004.
- [8] Shirong Zhang, Xiaohua Xia "Modeling and energy efficiency optimization of belt conveyors", Department of Automation, Wuhan University, Wuhan 430072, China Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002, South Africa 'www.elsevier.com/locate/apenergy'16 March 2011.
- [9] Daniel J. Fonseca, Gopal Uppal, Timothy J. Greene, "A knowledge-based system for conveyor equipment selection"Department of Industrial Engineering. The University of Alabama, Tuscaloosa 35487, USA, Expert Systems with Applications 26 (2004) 615–623.
- [10] Pawar Jyotsna, D.D.Date, And Pratik Satav, "Design And Optimization Of Roller In Belt Conveyor System For Weight Reduction" PG Student, Terna Public Charitable Trust College Of Engineering Osmanabad, India, Associate Professor, Terna Public Charitable Trust College of Engineering Osmanabad, India Proceedings of 10th IRF International Conference, 01st June 2014.
- [11] Chetan Kothalkar, T. Wankar and R.S. Wankar, "Analysis of the short distance gravity actuated oscillatory trolley conveyor" Scientific Officer, BRIT, BARC- Vashi complex, Vashi, Navi Mumbai - 400705, India, CIRCOT, Matunga, Mumbai, India, Sinhagad college of engineering, Pune, India, 14th National Conference on Machines and Mechanism, NIT, Durgapur, India, December 17-18, 2009.
- [12] Yibowei Moses, Ichetaonye Simon, and Idehenre Maxwell, "Mechanical Properties of Carbon Fibre and Metal Particles Filled Epoxy Composite" Department of Metallurgical & Materials Engineering, University of Lagos-Nigeria Department of Polymer & Textile Technology, Yaba College of Technology-Nigeria, International Journal of Emerging Technology and Advanced Engineering (IJETAE), Volume 3, Issue 11, November 2013) 664.
- [10] B.E. Gite, Miss. Suvidha R. Margaj,"Carbon Fibre As A Recent Material Use In Construction"Amrutvahini College of Engineering, Sangamner.