

# International Journal of Advance Engineering and Research Development

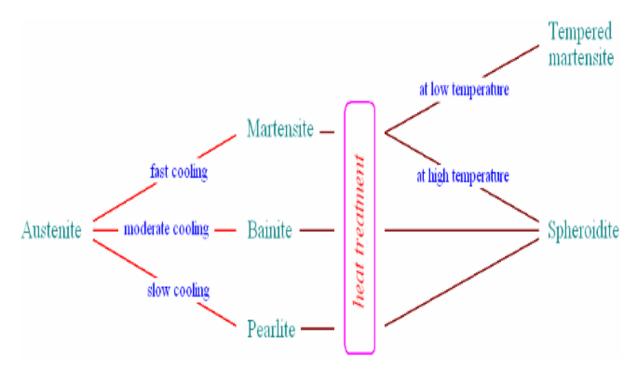
e-ISSN (O): 2348-4470

p-ISSN (P): 2348-6406

Volume 4, Issue 8, August -2017

# CAUSE EFFECT DIAGRAM OF HEAT TREATMENT PROCESS

Nishadevi N.Jadeja<sup>1</sup>, Hetal Padaya<sup>2</sup>, Darshana Dave<sup>3</sup>


<sup>1,3</sup> Assistant Professor, Government Engineering College, Bhavnagar-364002, Gujarat, India.

<sup>2</sup>Bacholar in Production Engineering, Government Engineering College, Bhavnagar-364002, Gujarat, India.

1. **ABSTRACT:** Heat treatment is an operation or combination of operations involving heating at a specific rate, soaking at a temperature for a period of time and cooling at some specified rate. The aim is to obtain a desired microstructure to achieve certain predetermined properties (physical, mechanical, magnetic or electrical).

## The major objectives of heat treatment are

- To increase strength, harness and wear resistance (bulk hardening, surface hardening)
- To increase ductility and softness (tempering, recrystallization annealing)
- To increase toughness (tempering, recrystallization annealing)
- > To obtain fine grain size (recrystallization annealing, full annealing, normalizing)
- To remove internal stresses induced by differential deformation by cold working, nonuniform cooling from high temperature during casting and welding (stress relief annealing)
- To improve machineability (full annealing and normalizing)
- To improve cutting properties of tool steels (hardening and tempering)
- > to improve surface properties (surface hardening, corrosion resistance-stabilizing treatment and high temperature resistance-precipitation hardening, surface treatment)
- > to improve electrical properties (recrystallization, tempering, age hardening)
- > to improve magnetic properties (hardening, phase transformation)



#### 2. Fundamentals of heat treatment:

Fe-C equilibrium diagram. Isothermal and continuous cooling transformation diagrams for plain carbon and alloy steels. Microstructure and mechanical properties of Pearlite, bainiteand martensite, austenitic grain size, hardenability, its measurement and control.

#### **Heat treatment Processes**

Annealing, normalizing and hardening of steels, quenching media, tempering. Homogenization. Dimensional and compositional changes during heat treatment. Residual stresses and decarburization

## 3. Cause Effect Diagram of Heat Treatment Problem

➤ Change the microstructure in improper heat treatment and using the improper furnace and other parameter of the heat treatment.

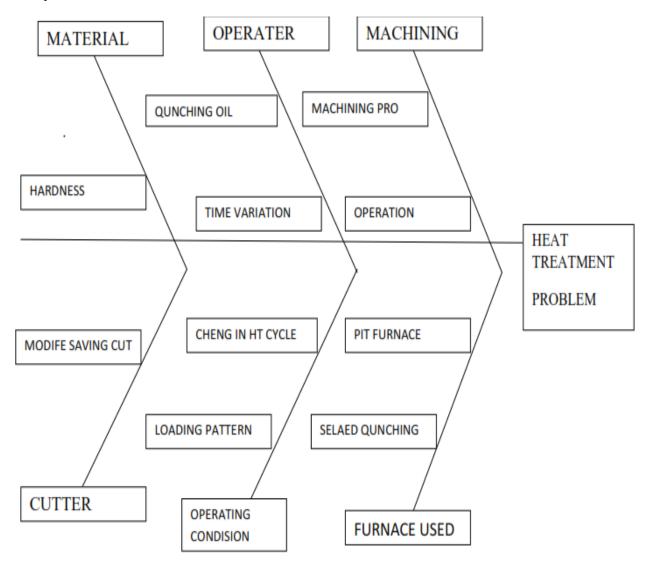



Figure: 2 Fish Bone Diagram for Energy Conservation Analysis in heat treatment process

- > Improper way to specimen cutting process
- ➤ High temperature cutting machinery using
- > Not maintain temperature





FIGURE: 3.HIGH TEMPERATURE CUTTING MACHINERY

> During heat treatment process not mention proper temperature



FIGURE:4 CHANGE IN MICRO STRUCTURE

We can reduce the heat treatment problem by using following techniques:

- Proper way to using heat treatment process furnace
- Cutting process in continues using cooling system
- > Proper temperature of heat treatment
- > Changing in heat treatment process cycle
- > Specimen cutting care fully
- Maintain proper temperature in furnace
- Arrangement of all components in proper way
- Checking material specification sheet before parches material
- Cutting process proper way

#### CONCLUSION

The correlation between the microstructures and mechanical properties of studied along with their fracture surfaces for two different heat treatment processes- Quenching ,Tempering and Austempering.

Author also studied the effect of Copper on the microstructures, mechanical properties and fracture surfaces after heat treating. For **Quenching and Tempering heat treatment cycle**, **author** observed the following:

- As the tempering temperature increases, ductility of the samples also increased but Compromising with hardness and strength.
- The strength and hardness values were more for the sample with copper while ductility Was found to be more for the sample without copper.
- > The fracture surfaces showed a mixed mode of fracture for both the grades of samples.
- ▶ But, the percentage of dimple fracture was found to increase with tempering temperature.
- > The microstructure in as cast condition shows the Pearlite matrix with graphite nodules in
- both grades of samples, while after quenching and tempering the matrix converted into the
- martensite and tempered martensite. Thus, the strength and elongation was increased in
- > tempered samples, but hardness decreases.

# For Austempering heat treatment cycle, author observed the following:

- As the holding time for austempering increases, the tensile strength initially increases and then decreases. Contrary to it, % elongation first decreases and then increases with time.
- > The hardness values normally decreases with austempering time.
- > The fracture surfaces showed a mixed mode of fracture for shorter austempering time.
- > The percentage of dimple fracture then increased with time. For longer austempering time, percentage of cleavage fracture was found to be more.
- > The microstructure was austerity or bainitic ferrite and retained austenite with graphite
- > Nodules embedded in it for all periods of time. But, the morphology of bainitic was
- > Changed from needles to plate like structure as the austempering time increases. So, the
- > Strength and hardness decreases with time and ductility.

#### References

- 1. Siefer W. and Orths K., "Transactions AFS", volume 78, 1970, Pages 382-387.
- 2. R.D. Forrest, "Some factors affecting the mechanical properties ductile iron", January 1989, Pages 23-37.
- 3. Kersey, "S.I. ductile Iron I": Production (revised in 1976) the state of the art, 1976, Sorel, Canada, Quebec Iron and Titanium, 1977.
- 4. R.D.Forrest, J.D Mullins, "Achieving and maintaining optimum ductile iron metal Quality", Foundry, An Indian Journal for Progressive Metal-Casting, volume xv, no.4, July-August2003,p.p51-58.
- 5. Heat treatment process hand book EDITION 2009 P.p201 to 561 'process of heat treatment'
- 6. Metallurgical hand book EDITION 2010 AS per ISO code P.p 607 "Solidification of material' p.p 1002 to 1030 for 'iron carbon diagram"
- 7.IS CODE for testing of material "IS 2018,2078" mechanical testing process