Scientific Journal of Impact Factor (SJIF): 4.72

e-ISSN (O): 2348-4470 p-ISSN (P): 2348-6406

International Journal of Advance Engineering and Research Development

Volume 4, Issue 8, August -2017

A Survey on Various Technique of Image Denoising and Comparative Analysis

¹Sanjaeev K Sharma, ²Dr. Yogendra Kumar Jain

¹Associate Professor, Department of E&I, SATI, Vidisha, India ²Professor and I/C HOD, Department of CSE, SATI, Vidisha, India

Abstract— Image denoisingoutlines the pre-processing stage in the region of study, photography, medical science and technology, wherein some waypicture has been degraded and requires to be restored prior toadditional processing. It is still a difficultarisis for researchers as pictured noisingorigins blurring and initiates artifacts. Unusual types of pictures inherit various noise models and noise areutilized to showvarious noise types. Denoising technique be inclined s trouble precise and based on the noise and image model types. In this paper, we study about type of noise, classification of image denoising method etc. In this paper, we presented two filters: Guided and Wiener Filter comparison. The tentative result performed on Peak Signal NosieRatio(PSNR) and Mean Square Error(MSE).

Keywords—Types of Noise; Guided Filter; Wiener Filter; PSNR; MSE.

I. INTRODUCTION

Digital image is very imperative in our routine life for example satellite T.V., computer resonance imaging and in area of research and technology. Image sensors collect the data sets which are contaminated by noise due to imperfect instruments, disturbed natural phenomenon can all degrade the feature of data of interest. Noise may also be introduced in images due to transmission and compression of images. Thus; image denoisingsare the compulsory and crucial step for image analysis. Thus, it is crucial to assign some efficient image denoisingtechniques to avoid this kind of corruption from digital images. Thiscrisis is still a bottleneck for the researchers because removal of noise causes the artifacts and image blurring. This paper gives different methods forelimination of noise and provides us the approaches inthe methods to explain which technique will give the reliable and approximate estimate of original picture given its degraded edition.

Denoising is the procedure of eleminating noise from the pictures. Noise reduction methods are abstractlyalikedespite of the picture being processed; Although a previousinformation of the features of aprobable signal can signify the implementations of these schemes varies, significantlybased on the signal types. Image denoising is frequentlyutilized in many fields for example publishing, photography, applications of medical image processing, where apicture was anyhow degraded but requires to be improved before it may be printed or making observations. For this sort of application we want to distinguish something about the degradation process so as to develop a model.[2]

Types of Noise

Normally images are affected by many noise. Various types of noise have their own characteristics and are inherent in images in different manner. Whole noisetypes can be alienated into-following:

- Multiplicative Noise Model
- Additive Noise Model

In the multiplicative model the noisy picture is generated by multiplication of realpicture and noise signal. Additive noise is the signal that achieve additional to the real picture to generate the resultant noisy image. The general noise types found in images are Gaussian Noise, SPN and Speckle Noise.[3]

A. Gaussian Noise

It is consistentlyspread over thefull signal. Every pixel within noisy picture is the summation of random Gaussian distributed noise value and rue pixel value. It is an amplifier noise that is independent at all pixels with signal intensity. Gaussian noise is statistical noise that has its prospect density function alike to the usual distribution. It occurs due to electronic circuit & sensor noise owing to badlight or peak temperature. It is a constant power additive noise.

B. Salt & Pepper Noise (SPN)

SPN is also called shot noise, spike noise or impulse noise. ApictureincludingSPN will have shady pixels in intense regions and intense pixels in shady regions. It can be occurred by dead pixels, analogue-to-digital converter and bit errors in communication [4]. It have two potential values, a high value and small value. The prospect of each is typically less than 0.1.

C. Speckle Noise

It is a granular noise whichintrinsically presents also degrade the features of the synthetic aperture radar (SAR) and active radar pictures. In conventional radarthis noise consequences from random variations in the arrival signal from a

pointwhich is no larger than a single image-processing component. Itenhances the average of grey level of confined region [4]. It is a multiplicative noise. The source of this noise is an arbitrary interference between the coherent returns.

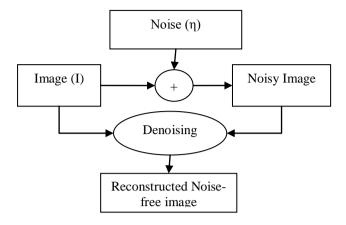


Figure 1. Block diagram of image denoising

II. DENOISING OF IMAGE

It means suppression of the effect of the noise, consequently resultant image becomes acceptable. There are two fundamentalmethods for imagesdenoisingtransform domain and Spatial filtering methods. Spatial domain schemes work directly on image pixels, whereastransforming domain schemes are depending on modifying Fourier or wavelet transform of the image. Several denoisingschemes are present for removal of fixed impulse noisevalue due to their efficiency in noise elimination and ease of implementation. Standard median filter (SMF) is broadly used for its ease and noise eliminationability. But this filter proves to be effective at a small noise density because as noise density enhances the edges of the picture are not preserved. This drawback was overcome by the introduction of several other techniques for the elimination of SPN[5]. In center weighted median filter (CWM), the middle pixel is allocated particular weight; this means that middle pixel is continualmany times which isspecified as mass and then executed. CWM conserves muchfacts at small noise suppression. Scheme of Adaptive median filter (AMF) utilizes the methodforadaptivelyalters window size togetremoval of impulse noise. But this technique at peak noise density leads to hazing of images due to huge window size [6].

PROBLEM STATEMENT

Noise arises as a result of un-modelled or un-modellable processes going on in the production and capture of the real signal. Noise appears in images from a range of sources. SPN common image processing problem, noise is occurring by errors withininformation transmission, malfunctioning pixels in camera sensors, defective memory sites, or timing errors withindigitization procedure and most scanned images contains noise in form of darker dots and disturbances caused by the scanning process. If noise cannot be decrased thus, the image may mistakenly be interpreted incorrect.

There are following impulsive noise models are given below.

Let $Y_{i,j}$ be gray level of real picture Y at pixel position (i, j) and

 $[n_{min}, n_{max}]$ be the dynamic array of Y. Let $X_{i,j}$ be gray level of noisy picture X at pixel (i, j) position. Impulsive Noise can then be explained as:

$$X_{i,j} = \begin{cases} Y_{i,j} with \ 1-p \\ R_{i,j} with p \end{cases}$$

where, $R_{i,j}$ is for the real gray scale value over pixel location(i, j). When $R_{i,j} \in [n_{\min}, n_{max}]$ the picture is called corrupted with Random Valued Impulsive Noise (RVIN) and when $R_{i,j} \in [n_{\min}, n_{max}]$ it is specified as SPN.

The disparity between RVIN and SPN can be best described by Figure 1.2. In the condition of SPN the pixel reserve in the noise can be either $n_{min}(0)$ or $n_{max}(255)$. While in RVIN state it can range from n_{max} to n_{max} .

In this thesis, we primarily focus only on SPN and imitation is achieved using SPN. Conversely projected filter is eliminating RVIN and SPN both successfully.

III. CLASSIFICATION OF DENOISING ALGORITHMS

- **A. Spatial Filtering** A conventional way to remove noise from image information is to make use of spatial filters. Spatial filters can be supplementary classified into linear and non-linear filter.
- 1) Non-Linear Filters The noise is eliminatedlacking any efforts to clearly identify it. Spatial filters utilize a low pass filtering on sets of pixels bythe assumption that noise absorbs the higher area of the frequency spectrum. Usually spatial

filters eliminate noise to a rational extent except he rate of blurring images that in turn creates the edges withinimageinvisible. Inmoderntime, a range of nonlinear medianfilters for examplerank conditioned rank selection, weighted median, and relaxed median have been discovered to conquer this disadvantage.

Median filterIt is non-linear filter. It removes noise effectively as well as preserving sharp edges. It is more operative than convolution when the aim is to concurrently eliminate and reserve noise. It just substitutes every pixel value by the average intensity level in the nearby pixel [7]. It verifies to be fine in eliminating SPN. It is ainstruction statistics filter beside getting the average, rank of pixel values in the window, get the nth value 1.2

Averaging filterIt is easy to understand.it do smoothing of pictures (that iseliminatingchanges of power between two pixels). Average filter substitutes every pixel by the mean of pixel in a square window nearby pixels. Bigger window can eliminate noise veryefficiently, but also blur image

2)Linear Filters It is thegreatest mean filter for Gaussian noise forMSE. Linear filters be inclined to haze sharp edges, obliterate lines and other wellpicture details, and executebadly in the occurrence of signal-based noise. The wiener filtering techniqueneeds the dataregardingactual signal and spectra of the noise it works fine if the fundamental signal is even. Donoho and Johnstone projected the wavelet based denoising system to reduce the limitation of the Wiener filtering, in.

Weiner Filter

Thistechniqueneeds the data about theactual signal and spectra of noise.it works fineonly if the fundamental signal is even. Weiner techniqueexecutes the spatial smoothing and its model difficulty control matched to the selecting the window size. H(u, v) is the degradation function and its conjugate complex is $H(u, v)^*$. G(u, v) is the degraded picture. Sf (u, v) and Sn(u, v) are power spectra functions of noise and actual picture. Wiener Filter assumes noise and power spectra of object.

$$F(u,v) = \frac{H(u,v)^*}{H(u,v)^2 + \frac{Sn(u,v)}{Sf(u,v)}.G(u,v)}$$

Guided filter

It is a linear rotation variant explicit filter in which the filtered output is obtained by considering the guidance image which can be either input picture itself or other image. The filtered output is independent of kernel size and intensity range. It is the very reliable filter for noisy images. It also preserves edges while smoothing .Its other applications includes image matting, detail enhancement, image denoising and HDR compression. The operation of guided image filtering is illustrate in fig.1.Window radius 'r' and regularization factor ξ are the two important design functions to implement filtering operation. Guided filter reduces the gradient reversal difficulty of bilateral filter.

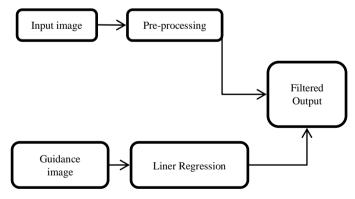


Figure 2.Guided image fillter

B. Transform Domain Filtering This scheme divided according to the alternative of the source functions as non-adaptive and data adaptive.

1)Non-AdaptiveData Transform

a. Spatial-Frequency Filtering Itintroducesuse of low pass filters through Fast Fourier Transform (FFT). The noise elimination is obtained by manipulating afrequency domain filter and adapting cut-off frequency when the noise elements are decorrelated from the helpful signal within frequency domain. These schemes are time taking and basedupon filter function performance and cut-off frequency.

b. Wavelet domain Filtering In this filtering schemeoperationscan be alienated into nonlinear and linear and techniques.

Linear Filters

Wiener filter within wavelet domain defer optimal output when the signal corruption may be modeled as a Gaussian procedure and the accuracy standard is the MSE.

Non-Linear Filtering

The process utilizes sparsityfeature of the wavelet transform (WT) and the actuality that the this measure white noise withinthe signal domain to the transform domain. Therefore, signal energy turn into more intense into lesser coefficients within transform domain, noise energy does not. It is significant principle that allows the division of signal from noise.

c. Wavelet Coefficient Model This model focuses on the multiresolution features of WT. This technique gives association of signal at unusual resolutions by obtaining the signal transversely multiple resolutions. This technique generates exceptional output but is very complex and expensive. The wavelet coefficients modeling can either be deterministic or statistical.

Deterministic method

This method of modeling includesmaking tree configuration of wavelet coefficients (WC) with each level in the tree show theevery scale of transformation and nodes show the wavelet coefficients. The optimal tree estimationshows a hierarchical interpretation of wavelet decomposition. WC of singularities havehugeWCwhichpersevere along the branches of tree.

Statistical Modeling of WC.

This scheme focuses on properties of the WT such as multiscale correlation among the WC, local correlation between nearby coefficients etc. This scheme has an inherent objective of perfecting the precise modeling of image information with utilize of WT.

2) Data-Adaptive TransformsIn recent times a latesttechnique called Independent Component Analysis (ICA) has achieved broad spread attention. One benefit of utilizing ICA is it's theory of signal to be Non-Gaussian that facilitates denoising of pictures with Non-Gaussian with Gaussian division. Some uses of ICA technique are machine fault recognition, cancelling of reflection, seismic monitoring, searchingconcealed factors in economic data text document study, sound signal processing, radio communications, data mining, image processing, time series forecasting, defect recognition in patterned display surfaces, bio medical signal processing. Disadvantage of ICA dependingschemes is the computational charge because it utilizes sliding window [8]

IV. LITRETURE SURVEY

Twinkle Shah, et.al (2015) [9]ImageDenoising is very popularapplication of image epitome. This paperadvised a schemeto enhance epitome dependingdenoising. Imagedenoising methods state-of-the-art utilize transform domain action for superiornoise elimination. This paperexplains the transform domainprocessing by the epitome dependingdenoisingoutline. Itutilizing Orthogonal Locality Preserving Projection (OLPP) are studied from the epitome and denoising is achieved within OLPP domain. The tentative results with unusual noiselevels advised aimportant number of enhancement on the real epitome based denoising.

Vikas Gupta et al.(2013),[10] showsaanalysis of fewnotabletaskswithin the image denoising. The admiredschemes are classified into different groups and an outline of special algorithms and analysis is offered.

Jignasa M. Parmar et al.(2013) [11] have estimated and matched performances of improveddenoising and local adaptive wavelet image denoisingscheme. These schemes are matched with other PSNR between real and noisy image and PSNR between real and denoised image. Their tentative results for apictureshow that RMSE of the local adaptive wavelet picturedenoisingscheme is smallestthanimproveddenoisingscheme and the PSNR of this method is greater than other scheme. Consequently, the picture after denoising has a better visual effect.

Kheradmand et al.(2013) [12] represent the filtering analysis of the projectedschemedepending on the spectral features of Laplacian matrices. Some of the firm iterative schemes for successful kernel-based denoising are specially used in writer's framework. Their projectedsystemgivesaimproved understanding of enhancement scheme in self-similarity-based methods, that can be used for their further improvement.

R. Harrabi et al.(2012) [13] studied the unsuccessfulness of isotropic diffusion and improved the study into the regular anisotropic diffusion. It is used with small gradient and entiredifference based diffusion is utilized along edges. These schemes have been functional to textured and satellite pictures to show the procedure. The PSNR for the trial data is appraised and the classification accurateness from these denoisingschemes is validated. Their tentative results express the advantage of the regular anisotropic diffusion for picture denoising.

International Journal of Advance Engineering and Research Development (IJAERD) Volume 4, Issue 8, August-2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

Guo-Duo Zhang et al.(2012) [14] propose that the idea of picture denoising is achieved from the degraded image noiseelimination, restore the realpicture. Traditional denoising schemesmay filter noise, except at the equivalent time they build the fuzzy picture details. The SVMdepending method for picture denoising is thebest method therefore it can not only eliminate noise, but also keep the picture detail. SVM is a machine learning, which based on statistical learning theory, and this method is widely applied to solve classification problems. The paper projected apicture denoising system based on SVM. Their imitation outcomes show that the process can keep the image detail, restore the realpicture and eliminate noise.

Meenal et al. (2012)[15] They also propose a latest approach which gives a heterogeneous way for the challenging issue. In [16] they projected approach they projected three different schemes blur, noise and lastly for noise and blur. These methods are correlated by PSNR, SNR, MSE and Image Fidelity. They achieve result on different scenario. They also compare our result on the basis of the above five parameters and the result is better in comparison to the traditional technique.

XuGuanlei et al.(2012) [17] checks how the bi-dimensional empirical mode decomposition (BEMD) proceeds in digital picture. The 3-Ddices showing the presentation of BEMD are offered, that produce good perception and physical explanation. The theoretical study is provided for analyzing observed behaviors and supported by numerical experiments. The main aim of their study is primarily to contribute to a recovered perceptive of the possibilities and limitations offered by BEMD in digital images.

Wen-Chieh Lin, et.al (2011) [18] projected alocal tone mapping processwhich areviewseffects of attentionand adaptation. our accepted High Dynamic Range(HDR) saliency graph to analyze an attention graph, whichforecasts the attentive and non attentative areasinan HDR picture. The attention graph is then utilized to nearbyregulate the contrast of the HDR picture according toadaptation and attention models found in psychophysics. These learn their tone mapping procedure to HDRvideos and pictures and computeoutputcreatedby three state-of-the-art tone mapping algorithms. This studyprove that these schemegenerates results withen hanced picture quality in condition of preserving chromaticity and particulars of image saliency.

Yen-Ching Chang, et.al. (2010) [19] haveprojected a latest framework for the contrast enhancement with histogram equalization. In this procedure twosupport and boundary values are taken and the values of the picture are set according to these value. The projected technique effectively decreases the washout emergence and artifacts of the image.

Chen HeeOoi, et.al. (2010) [20] proposed novelapproach of contrastenhancement of the pictures using quadrant dynamic histogram equalizations. The proposed QDHE is the very robust scheme for details extraction of the small contrast images. Observing from the imitation results achieved, the QDHE has generates the finest performance for quantitative and qualitative evaluations.

Objectives

The objective of this paper is to learn the existing typical median filter and examine its result on restored picture and to effort to the enhanced and proficient filter. In summary, the thesis objects are listed as:

- To compare image restoration by using median and proposed filters.
- To evaluate restored images by using MSE and PSNR.

MSE In statistics, MSE of the estimator is one of various methods to calculating the quantity through which an estimator vary from the real value of the quantity being approximated. Now it is only utilized to calculate the dissimilarity between real pictures with a restored image.

$$MSE = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} (Yi, j - \hat{Y}i, j)^{2}$$

PSNR analysis utilizes a standard arithmetical model to compute an objective dissimilarity between two pictures. It approximates the dominance of a reconstructed picture regarding a real picture. The fundamental thought is to analyze a distinct number that imitates the value of the reconstructed picture. Reconstructed picture with greater PSNR are evaluate better.

Given an original picture Y of $(M \times N)$ pixels size and a reconstructed picture \hat{Y} , the PSNR (dB) is explained as:

$$PSNR(x) = \frac{10 \text{ Xlog}((double(m).^2))}{MSE(x)}$$

TABLE I. PSNR AND MSE COMPARISON BETWEEN GUIDED AND WIENER FILTER

IMAGE	Guided Wiener Guided Wiener				
IVII IOE	Filter	Filter	Filter	Filter	
	MSE	MSE	PSNR	PSNR	
	25.6329	19.4256	30.5854	32.0563	
	13.2965	11.5053	33.4049	34.4053	
	26.1108	22.2865	30.8855	31.5399	
	40.1413	43.2788	28.2429	27.5165	

TABLE II. PSNR AND MSE COMPARISON BETWEEN AVERAGE AND MEDIAN FILTER

	Average filter	Wiener filter	Median filter
PSNR	63.9887	7.1795	7.1811
MSE	0.0260	1.2449e ⁺⁰⁴	$1.2444e^{+04}$

22	Average filter	Wiener filter	Median filter
PSNR	63.4729	66.3031	76.2956
MSE	0.0292	0.0152	0.0015

V. CONCLUSION

In this pape, represent a analysis on image denoising scheme and comparative study on various techniques and types. As pictures are imperativeforall field so it is amain preprocessing job before additional processing of picture like feature extraction, texture analysis, segmentation, etc. In image denoising unusual types of noises which can corrupt image and types of filters by which recover noisy image. Different filters show different results after filtering. Some filters degrade

picture quality and remove edges. Presentation of denoising algorithms is calculated by quantitative performance measures for example PSNR, MSE with condition of visual superiority of the pictures.

VI. REFERENCES

- [1] Kanika Gupta, S.K Gupta, "Image Denoising Techniques- A Review paper". IJITEE 2013
- [2] Vaishali V. Thorat, "Study of Denoising Algorithms Review Paper". IJSR 2015
- [3] Rahul Singh, Preeti Singh, Farzana Parveen, "brief review on image denoising techniques".ijstm 2015
- [4] [Kaur J., Kaur R., "Digital Image De-Noising Filters A Comprehensive Study", International Journal OfResearch In Computer Applications And Robotics, ISSN 2320-7345, Vol.2 Issue.4, April 2014, pg: 105-111
- [5] Priyanka Rastogi, Neelesh Gupta, "Review of Noise Removal Techniques for Fixed Valued Impulse Noise". International Journal of Computer Applications. 2015
- [6] Fanzhi Kong, Wenbin Ma, "A Fast adaptive Mean Filtering Algorithm,", 2nd International Conference on Industrial and Information Systems, IEEE 2010.
- [7] Pratap Singh Chahar, VandanaVikas Thakare, "Performance Comparison of Various Filters for Removing Gaussian and Poisson Noises". IRJET 2015
- [8] Jadhav P. B., Dr. Sangale. S. M., "Image Denoising Techniques: Review". IJARCSSE 2015
- [9] Twinkle Shah, Gitam Shikkenawis and Suman K Mitra, "Epitome based Transform domain Image Denoising". IEEE 2015
- [10] Vikas Gupta, Vijayshree Chaurasia, Madhu Shandilya, "A Review on Image Denoising Techniques", International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS).
- [11] Parmar, J.M.; Patil, S.A., "Performance evaluation and comparison of modified denoising method and the local adaptive wavelet image denoising method," Intelligent Systems and Signal Processing (ISSP), 2013 International Conference on , pp.101,105, 1-2 March 2013.
- [12] Kheradmand, A; Milanfar, P., "A general framework for kernel similarity-based image denoising," Global Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE, pp.415,418, 3-5 Dec. 2013.
- [13] Harrabi, R.; Ben Braiek, E., "Isotropic and anisotropic filtering techniques for image denoising: A comparative study with classification," Electrotechnical Conference (MELECON), 2012 16th IEEE Mediterranean, vol., no., pp.370, 374, 25-28 March 2012.
- [14] Guo-Duo Zhang; Xu-Hong Yang; Hang Xu; Dong-Qing Lu; Yong-Xiao Liu, "Image Denoising Based on Support Vector Machine," Engineering and Technology (S-CET), 2012 Spring Congress on , pp.1,4, 27-30 May 2012.
- [15] Meenal Jain, Sumit Sharma, Ravi Mohan Sairam, "Effect of Blur and Noise on Image Denoising based on PDE", International Journal of Advanced Computer Research (IJACR) Volume-3, Number-1, Issue-8, March-2013.
- [16] Meenal Jain, Sumit Sharma, Ravi Mohan Sairam, "Result Analysis of Blur and Noise on Image Denoising based on PDE", International Journal of Advanced Computer Research (IJACR) Volume-2, Number-4, Issue-7, December-2012.
- [17] Guanlei, Xu, Wang Xiaotong, and Xu Xiaogang. "On analysis of bi-dimensional component decomposition via BEMD." Pattern Recognition 45, no. 4 (2012): 1617-1626.
- [18] Lin Wen-Chieh, and Zhi-Cheng Yan. "Attention-based highdynamic range imaging." The Visual Computer 27, no. 6-8, 717-727, 2011.
- [19] Chang, Yen-Ching, and Chun-Ming Chang. "A simple histogrammodification scheme for contrast enhancement." ConsumerElectronics, IEEE Transactions on 56, no. 2, 737-742, 2010.
- [20] Ooi Chen Hee, and Nor Ashidi Mat Isa. "Quadrants dynamichistogram equalization for contrast enhancement." Consumer Electronics, IEEE Transactions on 56, no. 4, 2552-2559, 2010.