

Scientific Journal of Impact Factor (SJIF): 4.72

International Journal of Advance Engineering and Research Development

Volume 4, Issue 9, September -2017

Optimization of Various Machining Parameters of EDM by using Genetic Algorithm

C.Raghavendra¹,Dr.V.Venugopal Reddy²,K.Pavan Kumar Reddy³

¹Mtech student Mechanical Engineering, JNTUCEP. ²Head and professor Mechanical Engineering, JNTUCEP. ³Assistant professor Mechanical Engineering, JNTUCEP.

Abstract- In present days of the competitive environment, all the companies across the world are trying to reach the market demand and increase the profits without increasing the cost of the product. It can be achieved by reducing the losses with of high productivity and good surface finish. Machining of hard metals, complex shapes with of traditional manufacturing is difficult. So it is replaced by the unconventional machining process. Electric discharge machining is one of the unconventional machining processes used to machining hard metals, complex shapes with of metal erosion technique by using all electro conductive materials as tools. In optimizing process parameters selection is very crucial. Process parameters considered in these discharge current, pulse on time, pulse off time, tool material effects outputs on material removal rate, surface roughness. L27 Orthogonal Array design of experiments is used to do the machining on work pieces. Multiple regression analysis is used to develop the objective function. Genetic Algorithm is used to optimize the process on AISI P20, HE20, C45, and EN47 work materials by Copper, brass, and graphite as tool materials.

Key words: Material Removal Rate, Surface Roughness, Genetic Algorithm, EDM, L27 Orthogonal Array.

I. INTRODUCTION:

EDM is one of the non-traditional manufacturing process used for removal of metal by an electrical spark erosion process. In these, processes electrical spark is used as a tool to remove material from work piece to produce the finished part to the desired shape. The EDM process uses two electrodes such as tool and the work piece both are separated by dielectric fluid. By the metal erosion process, the top surface of the work piece is subsequently re solidified and cools at a high speed manner. The applications of these EDM process mostly used in dies and press tools, plastic moulds, forging dies, aerospace, automotive and in several engineering applications. Kuwar Mausam et al. (2015) investigated the effect of four values of inputs, namely peak current, gap voltage, pulse-on-time and duty cycle in EDM for machining carbon fibre based two phase epoxy composites. Here GA is run for 15 generations using MATLAB 2010. In this work effect of these parameters are calculated on the TWR. MATLAB is used for the better convergence of GA. Final concluded after experimentation gap voltage, pulse-on-time and duty cycle are more influencing on TWR. R.Rajesh et al. (2012) performed the machining on Al alloy with grade HE9 in EDM with electrolytic copper as the tool. In these outputs namely MRR and SR are optimized affected by process parameters are working current, working voltage, oil pressure, spark gap Pulse On Time and Pulse Off Time. Multiple regression analysis and Genetic algorithm optimization technique are used to optimize the out parameters. The conformation runs show that current at 3 Å, voltage at 78 V, gap at 0.35, flow rate at 1, pulse ON as 1 and pulse OFF as 8 produced maximum MRR and minimum Surface Roughness. And finally, most influencing factor is current on both the output parameters.

II. EXPERIMENTATION AND OBSERVATION

a) MATERIAL SELECTION

Four different types of work pieces are used to do this experiment (i.e. C45, HE20, EN47, and AISI P20). Three different types of tool materials (i.e. copper, brass, graphite) for the used to machining the process. Chemical compositions of the four different work pieces are as follows. Below table shows the chemical composition of C45, HE20, EN47, AISI P20 steels.

Table1. Chemical composition of C45 steel							
Element	С	Mn	Si	S	Р		
Content %	0.447	0.751	0.318	0.022	0.024		

Table1. Chemical composition of c45 steel

Element	Mg	Si	Fe	Mn	Zn	Cr	Ti
Content%	0.57	0.469	0.249	0.047	0.015	0.006	0.02

Table3. Chemical composition of EN47 steel							
Element	С	Mn	Si	S	Fe	Cr	
Content%	0.502	0.735	0.49	0.048	97.30	0.969	

Content%	0.502	0.735	0.49	0.048	97.30	0.969	
Table 4. Chamical communities of D20 starl							

Table4. Chemical composition of P20 steel								
Element	С	Mn	Si	S	Р	Cr		
Content%	0.39	0.92	0.412	0.01	0.022	1.894		

b) EXPERIMENTAL SETUP

Experimentation is done on Sporkonix F50 die sinking EDM machine is shown in fig1. and table5 represents specifications of the machine.

TABLE5. Machine Specifications

XY Travel mm	400*300
Z -axis travel mm	250
Tank size mm	1000*600*450
Work Table mm	800*500
Maximum weight of work piece	2000kg
Maximum height of work piece	40mm
	-

Fig.1. EDM machining

Machining parameters for experimentation is considering with of three levels of process parameters for the experiment setting is shown in table6.

Tableo. Working conditions						
Symbol	Factors	Level 1	Level 2	Level 3		
X1	Current	10	15	20		
X2	T on	6	7	8		
X3	T off	4	5	6		
X4	Tool material	Copper	Brass	Graphite		

Table6 Working conditions

c) DESIGN OF EXPERIMENTS

L27 Orthogonal Array (OA) DOE is used to do the machining on work pieces. In the present experimental study, discharge Current, Pulse on Time, Pulse off Time and tool material has been considered as process variables.

S.NO	I(amp)	Ton (µs)	T off	Tool
			(µs)	material
1	10	6	4	Copper
2	10	6	5	Brass
3	10	6	6	Graphite
4	10	7	4	Brass
5	10	7	5	Graphite
6	10	7	6	Copper
7	10	8	4	Graphite
8	10	8	5	Copper
9	10	8	6	Brass
10	15	6	4	Copper
11	15	6	5	Brass
12	15	6	6	Graphite
13	15	7	4	Brass
14	15	7	5	Graphite
15	15	7	6	Copper
16	15	8	4	Graphite
17	15	8	5	Copper
18	20	8	6	Brass
19	20	6	4	Copper
20	20	6	5	Brass
21	20	6	6	Graphite
22	20	7	4	Brass
23	20	7	5	Graphite
24	20	7	6	Copper
25	20	8	4	Graphite
26	20	8	5	Copper
27	20	8	6	Brass

Table7. L27 OA table of experiments

d) CALCULATION OF MRR AND SR:

Material removal rate: MRR is calculated by measuring the time of machining. Material removal rate can be calculated using following formula

$$\frac{(W_{I} - W_{F})}{T} = g/minute$$

W_I: Initial wt of the work piece

W_F: Final wt of the work piece

T: Machining time in minute

Surface roughness: It is a quality of the machining surface related to the geometric irregularities of the surface. Surface roughness R_a arithmetic average height of surface above and below the central line. It is measured by using Mitutoyo SJ-201 Talysurf is shown in below fig.2.

Fig.2.Mitutoyo SJ-201 Talysurf.

By using of multiple regression analysis objective function is developed as follows

Objective function Y1 and Y2 $Y 1 = constant + a X_1 + b X_2 + c X_3$ (1) $Y2 = constant + a X_1 + b X_2 + c X_3$ (2)Y1= Material removal rate (MRR) Maximize: objective function1 Variables: X1: Discharge Current X2: Pulse on time X3: Pulse off time a, b, and c are the coefficient of these variables. Minimize: objective function2 Y2 = Surface roughnessVariables: X1: Discharge Current X2: Pulse on time X3: Pulse off time a, b, and c is the coefficient of these variables. Constraints: X1>= 10, X2<=20 X2>=6, X2<=8 X3>=4, X3<=6 Fitness function Minimize Y= Y1-Y2

e) GENETIC ALGORITHM

• Perform population initialization:

The main object of a genetic algorithm is optimized the objective function. Initially, size of the population is selected randomly from the total population. Then the selected individual population is converted into genes by using of encoding.

• Perform selection process:

After population initialization, selection is one of the important process. At the end of each production, a new population of solutions is selected to serve as the new population by evaluating the fitness of each individual. Production is to be optimizing the present optimization problem, and Tournament selection has been chosen randomly. Selection selects individual from the population to generate a sub group of the population to specify a tournament size. The amount of fitness of each individual in the subgroup is compared, and the best fitness values are selected. The new population is generated with cross-over, mutation operators.

Cross-over operation generates new children from two selected parents. Crossover process produces a better generation by combining of two parents chosen from the new population. Mutation operation randomly alters the value of genes in a chromosome to increase genetic multiplicity. By mutation will bring better character to increase the probability of

survey.

f) Experimental Results:

1. Experimentation result of EN47 steel is shown in the below table8.

S	Ι	Ton	Т	Tool	MRR	SR
.N	amp	(µs)	off	material	mg/min	μm
0			(µs)			
1	10	6	4	Copper	0.1281	4.34
2	10	6	5	Brass	0.07407	3.15
3	10	6	6	Graphite	0.2	4.49
4	10	7	4	Brass	0.0555	3.24
5	10	7	5	Graphite	0.175	5.71
6	10	7	6	Copper	0.2	4.98
7	10	8	4	Graphite	0.1272	4.61
8	10	8	5	Copper	0.1818	5.36
9	10	8	6	Brass	0.0666	3.72
10	15	6	4	Copper	0.4	3.56
11	15	6	5	Brass	0.1111	3.48
12	15	6	6	Graphite	0.2333	4.14
13	15	7	4	Brass	0.1666	3.16
14	15	7	5	Graphite	0.175	5.17
15	15	7	6	Copper	0.2.333	4.85
16	15	8	4	Graphite	0.0588	4.42
17	15	8	5	Copper	0.3500	5.20
18	20	8	6	Brass	0.0937	5.07
19	20	6	4	Copper	0.4666	5.20
20	20	6	5	Brass	0.1071	2.53
21	20	6	6	Graphite	0.1000	3.19
22	20	7	4	Brass	0.125	2.14
23	20	7	5	Graphite	0.1428	5.66
24	20	7	6	Copper	0.350	4.54
25	20	8	4	Graphite	0.05	4.48
26	20	8	5	Copper	0.4666	5.68
27	20	8	6	Brass	0.15	2.25

Table8. Experimentation result for EN47 steel

Regression Analysis: MRR versus current, pulse on time, pulse off time is shown in the below table9.

Table9.	Analysis	of	Variance	for	MRR

Source	D F	Sum of Squares	Mean Squares	F- value	Р
Regression	3	0.064677	0.021559	0.88	0.463
Ι	1	0.031234	0.031233	1.27	0.271
T on	1	0.006076	0.006076	0.25	0.624
T off	1	0.02768	0.027368	1.11	0.303
Error	23	0.565886	0.024604		
Total	26	0.630563			

Regression Equation

MRR = 0.00833 current + 0.0184 pulse on time - 0.0390 pulse off time - 0.240 (3) Regression Analysis: SR versus current, pulse on time, pulse off time is shown in the below table10.

		Sum of	Mean	F-	
Source	DF	Squares	Squares	value	Р
Regression	3	3.5997	1.1999	1.07	0.379
Ι	1	0.8581	0.8581	0.77	0.390
T on	1	2.5013	2.5013	2.24	0.148
T off	1	0.2404	0.2404	0.22	0.647
Error	23	25.6823	1.1166		
Total	26	29.2821			

Table10. Analysis of Variance SR

Regression Equation

SR = 1.70 - 0.0437 current +0.373 pulse on time +0.116 pulse off time (4)

2. Experimentation results of AISI P20 steel is s	steel is shown in the below table11.
---	--------------------------------------

S	I	Т	Т		MRR	SR
Ň	amp	on	off	TOOL	mg/min	um
0	ump	us	us	MATERIAL	g,	P
1	10	6	4	COPPER	0.08333	4.24
2	10	6	5	BRASS	0.100	2.46
3	10	6	6	GRAPHITE	0.33325	3.32
4	10	7	4	BRASS	0.1200	4.06
5	10	7	5	GRAPHITE	0.1904	3.65
6	10	7	6	COPPER	0.21428	5.16
7	10	8	4	GRAPHITE	0.1108	3.81
8	10	8	5	COPPER	0.1538	3.91
9	10	8	6	BRASS	0.075	4.75
10	15	6	4	COPPER	0.25	5.00
11	15	6	5	BRASS	0.08571	2.95
12	15	6	6	GRAPHITE	0.1666	4.36
13	15	7	4	BRASS	0.15	2.81
14	15	7	5	GRAPHITE	0.14811	4.18
15	15	7	6	COPPER	0.1875	4.81
16	15	8	4	GRAPHITE	0.1025	3.66
17	15	8	5	COPPER	0.300	4.31
18	15	8	6	BRASS	0.05	2.80
19	20	6	4	COPPER	0.200	3.43
20	20	6	5	BRASS	0.06666	2.23
21	20	6	6	GRAPHITE	0.0909	3.27
22	20	7	4	BRASS	0.04166	3.26
23	20	7	5	GRAPHITE	0.2000	4.79
24	20	7	6	COPPER	0.2222	4.09
25	20	8	4	GRAPHITE	0.043478	3.84
26	20	8	5	COPPER	0.14285	4.17
27	20	8	6	BRASS	0.07407	2.1

Table11. Experimentation result for P20 steel

Regression Analysis: MRR versus current, pulse on time, pulse off time is shown in table12

		Sum of	Mean	F-	
Source	DF	Squares	squares	value	Р
Regression	3	0.03637	0.01212	1.22	0.326
Ι	1	0.00375	0.00375	0.38	0.545
T on	1	0.00043	0.00043	0.04	0.836
T off	1	0.03217	0.03217	3.23	0.085
Error	23	0.22892	0.00995		
Total	26	0.26529			

Table12.Analysis of Variance

Regression Equation

MRR = -0.043 - 0.00289 current + 0.0049 pulse on time

+ 0.0423 pulse off time (5)

Regression Analysis: surface roughness versus current, pulse on time, pulse off time is shown in the below table13.

	1 a	Ule 15. Analysi	is of variance	C	
		Sum of	Mean	F-	
Source	DF	Squares	Squares	value	Р
Regressi	3	1.2302	0.41006	0.56	0.649
on					
Ι	1	0.9707	0.97069	1.32	0.263
Ton	1	0.2427	0.24267	0.33	0.572
T off	1	0.0168	0.01681	0.02	0.881
Error	23	16.959	0.73738		
Total	26	18.189			

Table13.Analysis of Variance

Regression Equation

SR = 3.49 - 0.0464 current +0.116 pulse on time

+ 0.031 pulse off time (6)

3. Experimentation results for HE20 steel is shown in the below table14.

S.	Ι	Т	T	TOOL	MRR	SR
Ν	Am	on	off	MATERIAL	mg/min	μm
0	р	μs	μs			
1	10	6	4	COPPER	0.025	3.27
2	10	6	5	BRASS	0.0571	3.45
3	10	6	6	GRAPHITE	0.0071	3.51
4	10	7	4	BRASS	0.05	3.61
5	10	7	5	GRAPHITE	0.008	4.03
6	10	7	6	COPPER	0.0111	3.60
7	10	8	4	GRAPHITE	0.006	4.21
8	10	8	5	COPPER	0.0083	3.60
9	10	8	6	BRASS	0.0833	3.16
10	15	6	4	COPPER	0.075	5.14
11	15	6	5	BRASS	0.08	3.41
12	15	6	6	GRAPHITE	0.0105	5.09
13	15	7	4	BRASS	0.1	4.08
14	15	7	5	GRAPHITE	0.02	3.91
15	15	7	6	COPPER	0.15	4.00
16	15	8	4	GRAPHITE	0.0285	5.7
17	15	8	5	COPPER	0.0333	4.64
18	15	8	6	BRASS	0.1333	5.4
19	20	6	4	COPPER	0.125	5
20	20	6	5	BRASS	0.15	3.98
21	20	6	6	GRAPHITE	0.0272	5.71

Table14. Experimentation rea	sult for HE20 steel
------------------------------	---------------------

22	20	7	4	BRASS	0.25	4.1
23	20	7	5	GRAPHITE	0.0250	6.54
24	20	7	6	COPPER	0.100	5.06
25	20	8	4	GRAPHITE	0.0166	5.12
26	20	8	5	COPPER	0.200	5.17
27	20	8	6	BRASS	0.3000	4.89

Regression Analysis: MRR versus current, pulse on time, pulse off time is shown in the below table15.

	D	Sum of	Mean	F-	
Source	F	Squares	Squares	value	Р
Regression	3	0.053601	0.01786	3.85	0.023
Current	1	0.048868	0.04886	10.53	0.004
T on	1	0.003542	0.00354	0.76	0.391
T off	1	0.001192	0.00119	0.26	0.617
Error	23	0.106735	0.00464		
Total	26	0.160336			

Table15.Analysis of Variance

Regression Equation

MRR = -0.218 + 0.01042 current + 0.0140 pulse on time

+ 0.0081 pulse off time (7)

Regression Analysis: SR versus current, pulse on time, pulse off time steel is shown in the below table16.

		Sum of	Mean	F-	
Source	DF	Squares	Squares	value	Р
Regression	3	10.1957	3.39855	7.56	0.001
Ι	1	9.5776	9.57761	21.30	0.000
T on	1	0.6161	0.61605	1.37	0.254
T off	1	0.0020	0.00201	0.00	0.947
Error	23	10.3411	0.44961		
Total	26	20.5367			

Table16. Analysis of Variance

Regression Equation

SR = 0.89 + 0.1459 current + 0.185 pulse on time

+ 0.011 pulse off time (8)

4. Experimentation result for C45 steel is shown below table17.

Table.17. Experimentation for C45 steel:

S	Ι	Т	Т	TOOL	MRR	SR
.N	(a)	on	off	MATERIAL		μm
0		μs	μs		(Mg/min)	
1	10	6	4	COPPER	0.0204	3.6
2	10	6	5	BRASS	0.0588	2.64
3	10	6	6	GRAPHITE	0.05	4.08
4	10	7	4	BRASS	0.05	2.51
5	10	7	5	GRAPHITE	0.02272	3.35
6	10	7	6	COPPER	0.08333	2.74

7	10	8	4	GRAPHITE	0.03225	3.37
8	10	8	5	COPPER	0.06521	3.29
9	10	8	6	BRASS	0.01034	2.59
10	15	6	4	COPPER	0.24285	3.44
11	15	6	5	BRASS	0.02272	2.46
12	15	6	6	GRAPHITE	0.100	3.18
13	15	7	4	BRASS	0.01785	2.41
14	15	7	5	GRAPHITE	0.07142	4.68
15	15	7	6	COPPER	0.3333	4.35
16	15	8	4	GRAPHITE	0.100	3.92
17	15	8	5	COPPER	0.125	3.9
18	15	8	6	BRASS	0.05263	2.71
19	20	6	4	COPPER	0.300	3.68
20	20	6	5	BRASS	0.02777	2.25
21	20	6	6	GRAPHITE	0.1111	3.43
22	20	7	4	BRASS	0.05882	2.3
23	20	7	5	GRAPHITE	0.1111	3.35
24	20	7	6	COPPER	0.400	4.03
25	20	8	4	GRAPHITE	0.08333	3.24
26	20	8	5	COPPER	0.1428	3.71
27	20	8	6	BRASS	0.04545	2.70

Regression Analysis: MRR versus current, pulse on time, pulse off time steel is shown in the below table18.

Table.18. Analysis of Variance							
	D	Sum of	Mean	Mean F-			
Source	F	Squares	Squares	value	Р		
Regression	3	0.052372	0.01745	1.87	0.162		
Ι	1	0.043744	0.04374	4.70	0.041		
T on	1	0.004250	0.00425	0.46	0.506		
T off	1	0.004377	0.00437	0.47	0.500		
Error	23	0.214190	0.00931				
Total	26	0.266561					

Regression Equation

MRR = -0.017 + 0.00986 current -0.0154 pulse on time +0.0156 pulse off time (9) Regression Analysis: SR versus current, pulse on time, pulse off time is shown in below table19.

Table.19.Analysis of Variance							
		Sum of	Mean	F-	P-		
Source	DF	Squares	Squares	Value	Value		
Regression	3	0.1397	0.04657	0.09	0.962		
Ι	1	0.0150	0.01502	0.03	0.863		
Ton	1	0.0249	0.02494	0.05	0.824		
T off	1	0.0998	0.09976	0.20	0.657		
Error	23	11.3531	0.49361				
Total	26	11.4929					

Regression Equation

SR = 2.54 + 0.0058 current + 0.037 pulse on time + 0.074 pulse off time (10)

III. RESULT AND ANALYSIS

This multi-objective optimization problem (MOP) is solved to obtain solutions by the multi objective Genetic algorithm employed by MATLAB 15b Software. Multi objective Genetic algorithm (MOGA) is worked for the optimized problem with of some selective conditions such as number of generations: 1000; lower boundary (I, Ton, T off) = (10, 6, 4); higher boundary (I, Ton, T off) = (20, 8, 6); Mutation criteria: Adaptive feasible; cross over function: Intermediate with

ratio 1 and Tournament selection with size 2. So the MOGA obtained results are compared with of Teacher Learner based optimization technique (TLBO) for confirmation of the results

By using of Genetic algorithm and Tlbo optimization technique, the optimum machining conditions obtained for HE20 steel material is

Table.20 GA optim value for HE20 steel						
Out put	Current	T on	T off	Mrr	Surface	
result	(amp)	(µs)	(µs)	(mg/min)	roughness(µm)	
MOGA	10	6	4	0.003	3.503	
TLBO	10.9218	6.8431	4.0733	0.024	3.794	

By using of Genetic algorithm and Tlbo optimization technique, the optimum machining conditions obtained for AISI P20 steel material is

Table.21 GA optim value for AISI P20 steel						
Out put result	Current (amp)	Τ on (μs)	Τ off (μs)	Mrr (mg/min)	Surface roughness(µm)	
MOGA	20	6	4	0.098	3.382	
TLBO	19.0187	6.3366	4.3718	0.168	3.478	

By using of Genetic algorithm and Tlbo optimization technique, the optimum machining conditions obtained for C45 steel material is

Table.22 GA optim value for C45 steel						
Out put result	Current (amp)	T on (μs)	T off (μs)	Mrr (mg/min)	Surface roughness(µm)	
MOGA	10	6	4	0.052	3.116	
TLBO	13.3578	6.4353	5.5634	0.102	3.267	

By using of Genetic algorithm and Tlbo optimization technique, the optimum machining conditions obtained for EN47 steel material is

Table.23 GA optim value for EN47 steel						
Out put result	Current (amp)	T on (μs)	T off (μs)	Mrr (mg/min)	Surface roughness(µm)	
MOGA	19.535	6.003	4.004	0.234	3.18	
TLBO	18.1637	6.5051	5.9455	0.223	4.02	

IV. CONCLUSION

The four steels, EN47, C45, AISI P20, and HE20 are machined on electric discharge machining process using copper, brass and graphite tools. Based on the L27 orthogonal array, pulse on time, pulse off time, tool material and current are taken as input parameters. ANOVA analysis is conduct and multiple regression equations are developed. By using multi objective Genetic algorithm, optimum values are obtained. The following conclusions can be drawn from this work.

- The optimal machining condition for EN47 steel with Genetic Algorithm is at on 19.535(A) I, $6.003(\mu s)$ T on, $4.004(\mu s)$ T off, with 0.234 (mg/min) MRR, $3.18(\mu m)$ SR are obtained using Copper as a tool.
- The desired outputs for HE20 steel: 10(A) I, 6(μs) T on, 4(μs) T off, with 0.003 (mg/min) MRR, 3.503(μm) SR are obtained brass using as a tool.
- The desired outputs for AISI P20 steel: 20(A) I, 6(µs) T on, 4 (µs) T off, with 0.098 (mg/min) MRR, 3.3828(µm) SR are obtained graphite using as a tool.
- The desired outputs for C45 steel: 10(A) I, 6(μs) T on, 4(μs) T off, with 0.052 (mg/min) MRR, 3.116(μm) SR are obtained graphite using as a tool.

REFERENCES

- 1. Ruben Phipon and B.B.Pradhan, Process Parameters Optimization Of Micro Electric Discharge Machining Process Using Genetic Algorithm. International Journal of Engineering Research and Applications Vol. 2, Issue 5, September- October 2012, pp.1986-1993.
- Qing GAO[†], Qin-he ZHANG[†][‡], Shu-peng SU, Jian-hua ZHANG, Parameter optimization model in electrical discharge machiningsss process Journal of Zhejiang University SCIENCE A J Zhejiang Univ Sci A 2008 9(1):104-108.
- R.Rajesha and M. Dev Anandb The Optimization of the Electro-Discharge Machining Process Using Response Surface Methodology and Genetic Algorithms International Conference on Modelling, Optimization and Computing (ICMOC - 2012) Procedia Engineering 38 (2012) 3941 – 3950.
- 4. Harmanpreet1, Harvinder Lal2, Gaurav Dhuria3 Investigation and modelling of EDM process parameters in Machining of Incoloy-800|. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163pISSN: 2321-7308.
- 5. Kuwar Mausama, Pradeep Kumar Singhb, Dr.Kamal Sharmac, Dr.R.C.Guptad, Investigation of Process Parameter of EDM using Genetic Algorithm (GA) Approach for Carbon Fiber based Two Phase Epoxy composites | Materials Today: Proceedings 3 (2016) 4102–4108.
- 6. J. C. Su, J. Y. Kao and Y. S. Tarng, —Optimization of the Electrical DischargeMachining Process Using a GA-Based Neural Network, [International Journal of Advanced.
- Vikasa, Shashikanta, A.K.Royb and Kaushik Kumarb, Effect and Optimization of Machine Process Parameters on MRRfor EN19 & EN41 materials using Taguchi. 2nd International Conference on Innovations in Automation and Mechatronics Engineering, ICIAME 2014.