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Abstract- Free convection flow of a Jeffrey fluid in a circular pipe has been investigated. A non-linear density 

temperature relationship is taken to express the body force term as buoyancy term. Applying perturbation method, the 

nonlinear governing equations are solved and the expressions for the velocity field and the temperature distribution are 

obtained. The rate of heat transfer from the pipe wall to the fluid is determined. It is observed that the velocity increases 

with increasing NDT parameter,  , or Jeffrey parameter, λ1 , whereas the temperature decreases with increasing or 

λ1.  The results have been compared with the corresponding case of linear density temperature variation.  The Nusselt 

number has also been plotted against the free convection parameter, K, for various values of  and it is observed that 

the Nusselt number increases with increasing K..     
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I. INTRODUCTION 

 

In fluids, heat convection takes place by forced convection and natural (or free) convection. Forced convection is a 

mechanism, or type of transport in which fluid motion is generated by an external force (like a pump, fan, suction device, 

etc.). So it is used to increase the rate of heat exchange. Free convection flow, on the other hand, results from the action 

of body forces on the fluid, that is, forces which are proportional to the mass or the density of the fluid. In this case, the 

flow patterns are determined by the buoyant force on the heated fluid.  

Ostrach [1, 2] has analyzed the effect of the frictional heating and the heat sources in the fluid, on the fully 

developed laminar convection flow between two parallel vertical plates when the wall temperatures are either constant or 

varying linearly along the plate length. Following this linear density temperature (LDT) variation, several convection 

problems are investigated.  Water is a liquid which does not behave like normal liquids. The volume of water increases, 

if we heat it or cool it, provided initially the water is at 4
0
c. This is known as anomalous expansion of water. In such 

cases, the density and temperature, relationship is modeled as quadratic density temperature (QDT) variation. Goren [3] 

has obtained a similarity solution of the boundary layer equations of the free convection flow from a semi-infinite plate 

of uniform temperature to water at 4
0
c. In this study he has established the necessity of using QDT variation. Sinha [4] 

has investigated the fully developed laminar convection flow between two parallel vertical plates, assuming QDT 

variation. Barrow, Seetharama  Rao [5] and Brown [6] examined the flows with the LDT relation on laminar free 

convection.  Using the QDT relationship, Sinha [4], Agarwal & Upmanyu [7], and Balakrishan et al. [8] discussed free 

convective flows of Newtonian fluids in tubes. Bhargava and Agarwal [9] have investigated the fully developed free 

convective flow of a Newtonian fluid in a circular pipe. 

          Nonlinear density temperature (NDT) relation accommodates the LDT relation and QDT relation to some extent. 

Furthermore, this relation takes care of the linear temperature-dependence of   used by earlier researchers. Gilpin 

[10] has used a density-temperature relation, which is similar to the NDT relation and which has been introduced by 

Vanier and Tien [11] with a view to predict the heat-transfer results in the case of water for temperatures between 0
0
 and 

20
0
C.  Sastri and Vajravelu [12] considered the problem of free convection between vertical walls. Using NDT relation 

they investigated the fully developed free convection flow and heat transfer between two long parallel vertical walls kept 

at constant temperatures. Krishna Gopal Singha [13] investigated analytical solution to the problem of MHD free 

convective flow of an electrically conducting fluid between two heated parallel plates in the presence of an induced 

magnetic field. Hayat et al. [14] investigated the effect of heat transfer on the peristaltic flow of an electrically 

conducting fluid in a porous space.  Vajravelu et al. [15] examined the free convection flow of Jeffrey fluid in a vertical 

porous stratum under peristalsis.  

A nonlinear density temperature variation can be defined as 

                  
2

0 1s sT T T T            
(1)

 

where 0 ,
 1  are the constants and Ts is the temperature in hydrostatic condition, 

This reduces to LDT variation when β1=0 and QDT variation when β0=0.  

http://en.wikipedia.org/wiki/Convection
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   In this paper, we discuss the problem of fully developed laminar free convection flow of a Jeffrey fluid in a 

circular pipe, implementing the NDT relationship defines above. The flow and heat transfer both depend upon a new 

parameter   1 0/ T     in addition to the heat source parameter   and the free convection parameter K. The 

velocity field, the temperature distribution and Nusselt number are obtained and the results are discussed through graphs.  

 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

              

Consider the fully developed steady laminar free convection flow of a Jeffrey fluid in a circular pipe. In the cylindrical 

coordinate system  , ,r z , let u,v,w be the velocity components. The motion being rotationally symmetric and 

assuming that the flow is fully developed, all the physical quantities will be independent of   and z. The radial and 

tangential components of velocity are zero. The corresponding equations of continuity, motion and energy are  
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Where, Q a constant, denotes the heat added due to heat sources, zf  the generating body force,  K1 the coefficient of 

thermal conductivity and p the pressure.  

The boundary conditions are 

at     0, 0, 0
dw dT

r
dr dr

       (5) 

at     , 0, wr a w T T       (6) 

Following Ostrach [1], the body force term in (3) can be expressed as buoyancy term. In the hydrostatic condition 

equation (3) gives  
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and hence  
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    where      .D sp p p 
    (9)                                                                                                  

From (1), we get     
2

0 1           
(10) 

where  sT T    

Now using relation (9) and (10), equations (2)-(5) lead to  
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3. NON-DIMENSIONALIZATION OF THE FLOW QUANTITIES 

        

We introduce the following non-dimensional quantities:  

          

* *, , ,
w

r K Kw
w

a W


 


    

         

 

 

where  

           ,w w sT T    

2 2 2 2 2 2 4 3

1

,z s z sf a f a
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   (13) 

Equations (11) and (12) reduce to  
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    (15) 

where  2

1/Qa K   is the heat source parameter. The parameter K can also be expressed as 

 Pr /z pK Gr f a C  in which  3 2 2

0 /zGr f a v   is the Grashoff number and Pr  is the Prandtl number.  

For the sake of convenience, dropping the stars, eqns. (14) and (15) finally are  
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The corresponding boundary conditions are  

0, 0, 0

1, 0, .

dw d
at

d d

at w K




 

 


   


   

      (18)      

 

4.  SOLUTION OF THE PROBLEM 

 

Equations (16) and (17) are coupled nonlinear differential equations which cannot be solved for exact solution. Applying 

perturbation method, we write 

      
2 3

0 1 2 .....w Kw K w K w        (19) 

     
2 3

0 1 2 .....K K K           (20) 

Substituting (19) and (20) into (16) and (17) and equating the coefficients of like powers of K on either side of the 

equations thus obtained, we get the following set of equations  
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The boundary conditions (18) then reduce to  

at  

' ' '

0 1 2

' ' '

0 1 2

0, 0

0

w w w

  

    


   
    (23) 

at  
0 1 2

0 1 2

1, 0

1, 0

w w w

  

    


   
    (24) 

Solving eqns. (21) and (22) under (23) and (24), we get  
2 4 6

0 0 1 2 3W D A A A           (25) 

2

0 1
4 4

 
          (26) 

12 10 8 6 4

1 1 4 5 6 7 8D A A A A A                     (27) 

16 14 12 10 8 6 4 2

1 1 2 3 4 5 6 7 8 9W E E E E E E E E E                   (28) 
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Similarly we can obtain the solutions for 2  and 2W .  The velocity and temperature functions are then 

obtained from (19) and (20). The rate of heat transfer from the pipe wall to the fluid per unit area of the pipe surface is 

given by 

 1 1
4 5 6 7 8
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  (29) 

The Nusselt number is therefore    
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IV. ANALYSIS AND RESULTS 

 

In this paper, fully developed free convective flow of a Jeffrey fluid in a circular pipe is investigated and the results are 

discussed for various physical parameters. We note that when the Jeffrey parameter λ1 is taken as zero, the results agree 

with the corresponding ones of Bhargava and Agarwal [9].  

Flow solutions are depicted graphically to study the parameters α, γ, λ1 and K on the velocity, the temperature 

and the Nusselt number. 

           Taking γ=0 in equations (21) and (22) under (23) and (24), we obtain velocity, temperature corresponding to LDT 

case of Jeffrey fluid flow in a circular pipe and they are given by 
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    The variation of velocity with η is calculated, from equations (25) and (28), for different values of γ and λ1 and 

is shown in Figures 1-4, for fixed K. We observe that the velocity increases with the increase in the NDT parameter γ, 

heat source parameter α and Jeffrey parameter λ1. 

           From the equations (26) and (27), we have calculated the temperature as a function of η, for fixed K, for different 

values of γ, λ1 and α and is shown in Figures 5-8. We observe that the temperature decreases with the increase in the 

parameters γ, α and λ1.  

From the equation (30) we have calculated the Nusselt number as a function of K for fixed λ1 and for different 

values of NDT parameter γ and α and is shown in Figures 9 and 10. We observe that the Nusselt number increases with 

the increase in the NDT parameter γ and α. 

We have calculated the Nusselt number as a function of K and γ for fixed α, and for different values of Jeffrey 

parameter λ1 and is shown in Figures 11 and 12.We observe that the Nusselt number increases with the increase in the 

parameters λ1 and γ. 
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Fig.1 Velocity distribution for various values 

of   for fixed α=5, K=0.5 and λ1 =0.01. 

 

 
Fig.2 Velocity distribution   for various values 

of   for fixed α=10, K=0.5 and λ1 =0.01. 

 

 
Fig. 3 Velocity distribution   for various values of λ1 for 

fixed α=5, K=0.5 and   =0. 

 
Fig. 4 Velocity distribution   for various values  of λ1for 

fixed α=5, K=0.5 and   =0.2. 

 

 
Fig.5 Temperature distribution for various values of   

for fixed α=7, K=0.5 and λ1 =0.01. 

 

 
Fig.6 Temperature distribution for various values of   

for fixed α=8, K=0.5 and λ1 =0.01. 
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Fig.7 Temperature distribution for various values of λ1 

for fixed α=7, K=0.5 and   =0. 

 

 
Fig.8 Temperature distribution for various values of 

λ1for fixed α=7, K=0.5 and   =0.2. 

 

 
Fig.9 Nusselt number distribution for various values of 

  for fixed α=5 and λ1 =0.01. 

 

 
Fig.10 Nusselt number distribution for various values of

  for fixed α=10 and λ1 =0.01. 

  

 
Fig.11 Nusselt number distribution for various values of λ1 

for fixed α=5 and   =0. 

 

 
Fig.12 Nusselt number distribution for various values 

of λ1 for fixed α=5 and   =0.2. 

 

V. CONCLUSIONS 

 

 The velocity increases with the increase in the NDT parameter γ and heat source parameter α. 

 The velocity increases with the increase in the Jeffrey parameter λ1 and γ. 

 The temperature decreases with the increase in the parameters γ and α. 

 The temperature decreases with the increase in the parameters λ1 and γ. 

 The Nusselt number increases with the increase in the parameters γ, λ1 and α. 
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