
 International Journal of Advance Engineering and Research
Development

Volume 1,Issue 12, December -2014

@IJAERD-2014, All rights Reserved 78

Scientific Journal of Impact Factor(SJIF): 3.134 e-ISSN(O): 2348-4470

p-ISSN(P): 2348-6406

ENHANCEMENT OF ADVANCED SCALABLE METHOD FOR
DECOMPOSITION AND ADAPTIVE SOLUTION FOR PARALLEL AND

DISTRIBUTED ENVIRONMENT

Hiral Mehta
1
, Prof. Ishan Rajan i

2

1
M.E. [Computer Engineering], Darshan Institute of Engineering & Technology, Rajkot,

 mehtahiral23@gmail.com
2
M.E. [Computer Engineering], Darshan Institute of Engineering & Technology, Rajkot, ishan.rajani@gmail.com

Abstract — MPI (Message Passing Interface) has been effectively used in the great enactment calculating community

for years and is the leading programming model. MPI implementations typically associate an MPI procedure with an

OS-process, subsequent in a coarse-grain indoctrination model where MPI processes are certain to the corporal cores.

Fine-Grain (FG-MPI) ranges the MPICH2 application of MPI and devices a combined runtime system to allow multiple

MPI processes to perform simultaneously confidential an OS-process. FG-MPI routines fibers (coroutines) to provision

numerous MPI courses confidential an operating scheme process. These are fu llfledged MPI processes each with their

individual MPI rank . The main goal of this paper is to provide a better sympathetic of decomposition technique in

MPICH and analyse to improve coarse-grain mechanism in distributed environment. MPICH is a high-performance and

generally portable implementation of the Message Passing Interface (MPI) standard (MPI-1, MPI-2 and MPI-3). To use

MPICH2 for programs with frequent small message passing.So objective is to study decomposition methods, which are

used to recover MPI implementation.

Keywords- MPI; MPICH2; decomposition Techniques; fine-grain mechanism; coarse-gain mechanism

I. INTRODUCTION

MPI is originally intended for distributed memory schemes. Unlike OpenMPI, pthread or other parallelization

explanations for shared memory, it does not certification shared data. Instead, MPI programs broadcast data by message

passing. Because of the memory partit ion, when there are thousands of centers on one computer, message passing will

demonstration its advantage on scalability. It will be more accomplished than shared statistics accessing. Thus, it is

significant for MPI implementations to increase the rapidity of data communication. There are many repeatedly used

exposed MPI implementations, such as MPICH2 and OpenMPI. To fu lly explo it mult icore arch itectures, these requests

may use certain novel technologies.

 MPI has been very successful in High Presentation Calculating for applying message-passing programs on calculate

clusters. There are many requests and a variety of records that have been inscribed using MPI. Many of these programs

are inscribed as SPMD programs where the program is parameterized by “N” the amount of MPI processes. Parameter N

regulates the granularity o f the package and provides the measure of availab le concurrency. In executing MPI programs,

one typically matches the number of MPI courses to the quantity of cores, the measure of available parallelism.

MPI (Message Passing Interface) is the leading model used for similar programming in great performance computing [1].

MPI is fru itful because of the work over the last 15 years on the MPI normal and middleware that assistance that MPI

programs continue to achieve well on parallel and cluster constructions across a wide variety of net fabrics. A lmost all

MPI applicat ions bind the implementation of an MPI process to an operating system (OS) process where usually a “one

process” per “processor core” planning is used. As a result, the notion of an MPI process is tightly bound to the physical

incomes of the machine, in actual the number o f cores and OS processes that can be created. Programs written using MPI

tend to be coarse-grain and cannot easily exp loit more fine-grain parallelism without resorting to threads or combining

MPI with other APIs like OpenMPI[2].

The goal of FG-MPI is to take benefit of the type of runtime scheme used by fine-grain idioms and to mix that into MPI

to obtain the best of both these programming replicas; the ability to have fine-grain parallelis m, while current MPI’s

unlikely p rovision for communicat ion between machineries. There is nothing in the MPI standard that forbids a finer-

grain interpretation of the MPI standard. The basic test is to decouple the concept of a MPI process from that of an OS

process and to device a fine-grain version of the middleware sideways with a fiber-based runtime system.

In this paper, we estimate the coarse-grain mechanis m to improve the efficiency of MPI-implementation.

II. BACKGROUND

2.1 Overview of PVFS

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 12, December -2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 79

The Parallel Virtual File System 2 (PVFS2) [4] was produced with the purpose of speak to the requirements of next

cohort systems. PVFS2 emphases on confirming robust, accessible operation while keeping the structure flexible enough

to acclimat ize to new technologies such as a cloud storing service. Howev er, PVFS2 does not have high data

dependability because it does not manage with not only the copies of data but also the copies of metadata.

The basic concept of PVFS2 is comparab le to that of additional distributed file systems [5].

First, PVFS2 routines a server/client architecture with both the server inspiration and client side collections residing

fully in handler space.

Second, server-type is distributed into a data server(I/O server) and metadata server. The data server supplies real

facts in a distributed way and the metadata server switches the metadata (e.g., I/O server d irectory, the amount of servers,

and stripe scope).Finally, the client assigns the virtual file system, which is attended by the servers. [11]

2.2 Overview of MPICH

MPICH is an ext raordinary-performance and usually movable implementation of the Message Passing Interface

(MPI) standard (MPI-1, MPI-2 and MPI-3).

MPICH and its products form the most extensively used implementations of MPI in the domain. They are used

totally on nine of the top 10 supercomputers (June 2014 ranking), counting the world’s fastest supercomputer: Tianhe -

2.[12]

The goals of MPICH are as follows:

1. To deliver an MPI implementation that professionally supports dissimilar computation and communication

platforms including product clusters (desktop schemes, shared-memory systems, mult icore designs), high-speed

networks (10 Gigabit Ethernet, InfiniBand , Myrinet, Quadrics) and exclusive h igh-end computing systems (Blue

Gene, Cray)

2. To enable cutting-edge investigation in MPI through an easy-to-extend segmental basis for other resultant

implementations.[13]

MPICH is dispersed as source (with an open-source, spontaneously available license). It has been verified on

numerous platforms, counting Linux (on IA32 and x86-64), Mac OS/X (PowerPC and Intel), Solaris (32- besides 64-b it),

and Windows.

MPICH was initially progressive during the MPI standards process starting in 1992 to offer feedback to the MPI

Forum on applicat ion and usability issues. This orig inal application was based on the Chameleon portability system to

deliver a light-weight implementation coating. Around 2001, extension had begun on a new implementation named

MPICH2. MPICH2 implemented extra features of the MPI-2 standard completed what was imple mented in the original

MPICH. The concluding release of the unique MPICH is 1.2.7p1. The type numbers of MPICH2 were recommenced at

0.9 and continue to 1.5. Starting with the major statement in November 2012, the p roject is ret itled back to MPICH with

a version number of 3.0

There are various versions available of MPICH2. The latest version of MPICH2 is:

[1] MPICH 3.2a2 released

A new performance release of MPICH, 3.2a2, is currently accessible for download. This preview release enhances

several competences including support for the suggested MPI-3.1 standard (contains non blocking collective I/O), fu ll

Fortran 2008 support (enabled by default), support for the MellanoxMXM interface for Infin iBand, provision for the

Mellanox HCOLL boundary for collective communication, support for OFED Infin iBand for Xeon and Xeon Phi

architectures, and important improvements to the MPICH/portals4 implementation. These landscapes represent a subset

of those deliberate for the 3.2.x release series).

[2] MPICH 3.1.3 released

The MPICH team is satisfied to announce the obtainability of a new stable release, mpich-3.1.3. This is a

unchanging announcement that adds several improvements to Portals4 support, PAMI, RMA, and ROMIO. It also

comprises a large number of v irus fixes. All production surroundings are restored to advancement to this releas e.[14]

III. EXIS TING WORK

3.1 FG-MPI overview

http://www.mpich.org/2014/11/16/mpich-3-2a2-released/
http://www.mpich.org/2014/10/08/mpich-3-1-3-released/

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 12, December -2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 80

FG-MPI apparatuses a user-level runtime combined into MPICH2 to allow for multip le MPI processes within one OS

process. In order to avoid any uncertainty we will use the term “OS-process” when mentioning to working systems

processes and at all other residences the terms process, fine-grain process and MPI process will be used interchangeably.

Same address space are being shared by MPI process referred to as collocated processes.

FG-MPI in the layered flexible architecture of MPICH2. The MPICH2 ADI3 layer signifies that an implementation

provides data structures functions. Representation in this layer is in terms of MPI requests/messages and the functions for

operating those requests.

One of first considerations in integrating FGMPI in MPICH2 was to provision enormous amounts of concurrency

through ascendable sharing of MPI constructions among the coroutines. To this end, a large number of MPI storing

structures such as dispatched receive queues, surprising messages queues, communicator and request pools are

communal by the coroutines.

 Devices in MPICH2 are communication mechanisms, which are paired with frequencies that represent specific modes of

communicat ion. In FG-MPI, we influence the Nemesis CH3 channel since it is calculated for scalability and is a highly

optimized, communication subsystem that provides mult i network support. Low latency, lock-free shared memory

queues and high performance communication for both intra-node and inter-node communicat ion are provided by it [6].

 Other structures which are an essential part of MPI are communicators and collections and their scalability and sharing is

essential to FGMPI. In past work [7] discussed in detail how segment these structures and scale to hundreds and

thousands of MPI processes.

The MPICH2 implementation couples the naming of an MPI procedure with an OS-process which, in turn, is tied to its

message endpoint. In FG-MPI, we decouple MPI process from its opinions of addition to allow multiple MPI processes

to share the same address space. This compulsory creating a 2-level namespace, where the OS-processes are named

distinctly from the MPI processes. As well, spreading the MPI message matching to represent the new order and

multip lexing and de-multip lexing of messages.

Fine-grain MPI is based on MPICH2 [8] with Nemesis [9], [10] as its communication subsystem. MPICH2 is a popular

open source implementation of the MPI library and is actively supported. It supports a rich collection of communication

fabrics. The Nemesis communication subsystem is intended for scalability and little shared memory communication

above, making it suitable for our fine-grain system.

FG-MPI decouples an MPI process from its conservative definit ion as a heavy-weight procedure and provisions multiple

MPI processes confidential an OS process. In order to avoid any uncertainty with the term “process”, we refer to an

MPIprocess as a “proclet” and reserve the term procedure for an OSprocess .

MPI tasks in MPICH2 are firmly coupled to the notion of an OS’s process and the challenge was to create a fine grain

version of MPICH2 middleware along with a runtime system for the proclets. In p revious work improved the mpiexec

usefulness for launching MPI programs to allow the user to require the number and location of MPI proclets through the

command line.

IV. PROPOS ED WORK

In this paper, we will use the coarse grain decomposition technique. because,

 Coarse-grain system has great sub components.

 If object composition is based on object positions, then its coarse-grain.

 If there are very high business logic then its coarse grain.

 If there is one object to extra than one table then its coarse-grain.

 Coarse-grain means a single call will do more work.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 12, December -2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 81

We will use this architecture to improve the MPI- implementation.

ROMIO

 It is a great-performance, portable implementation of MPI-IO that works with any MPI application on numerous file

system.

 It is included as part of MPICH2, MPICH1, seller MPI implementations for PVFS, SGI, XFS, PanFS and U FS folder

system.

 ROMIO achieves sophisticated optimization that enables applications to accomplish high I/O performance.

 Shared I/O, data sifting and I/O aggregation are integrated by ROMIO.

 ROMIO also admits a number of hints from the user for refin ing I/O performance, such as file striping and algorithm

change parameters.

Nemesis

 Nemesis is a scalable, h igh routine, shared commemoration, multi-network message subsystem within MPICH2.

 Nemesis offers low-latency, high bandwidth message, particularly for intra-node communication.

LUS TRE

 It is a parallel d ispersed file system, normally used for great scale cluster encoding.

GPFS

 It is a high performance clustered label system developed by IBM.

Infniband

 It is a mainframe network communication connection used in high performance computing fecturing very high

thoughput & low-latency.

 It is used for data interconnect both concerning and within computer.

Myrinet

 It is rate effect ive, h igh performance, package communication &converting technology that is widely u sed to

interconnect cluster & workstation.

V. CONCLUS ION

FG-MPI extends the MPICH2 implementation of MPI to make it probable to have several MPI processes inside an OS-

process. FG-MPI achieves the following. (a) Decouples the notion of a procedure from that of hardware and types it

possible to regulate the g ranularity of programs freely from the hardware. (b) Decreases the overhead of adding

concurrency by integrating the FG-MPI runtime into the MPI middleware.

By separating an MPI process from its representative definition as an OS process we were able to measure up the number

of MPI processes and permit for a finer-grain effect ing model. We have taken improvement of the similar type of runtime

systems used by talks like Erlang which have become general on multicore processors.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 12, December -2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 82

REFERENCES

[1] V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K. Hollingsworth, F. Shull, and M. V. Zelkowitz,

“Understanding the high-performance-computing community: A software engineer’s perspective,” IEEE Softw., vol.

25, no. 4, pp. 29–36, 2008.

[2] OpenMP, “The OpenMP Application Program Interface,” Available from http://openmp.org/wp/about-openmp/.

[3] E. Lusk, “MPI on a hundred million processors...Why not?” Talk at Clusters and Computational Grids for Scientific

Computing 2008, Availab le from http://www.cs.utk.edu/_dongarra/ccgsc2008/talks/

[4] “Pvfs project,” http://www.pvfs.org/, Aug 2011.

[5] W. Yu, S. Liang, and D. K. Panda, “High performance support of parallel v irtual file system (pvfs2) over quadrics,”

in Proceedings of the 19th annual international conference on Supercomputing, ser. ICS ’05. New York, NY, USA:

ACM, 2005, pp. 323–331. [Online]. Availab le:http://doi.acm.org/10.1145/1088149.

[6] D. Buntinas, G. Mercier, and W. Gropp, “Implementation and evaluation of shared -memory communicat ion and

synchronization operations in MPICH2 using the Nemesis communicat ion subsystem,” Parallel Comput., vol. 33,

no. 9, pp. 634–644, 2007.

[7] H. Kamal, S. M. Mirtaheri, and A. Wagner, “Scalab ility of communicators and groups in MPI,” in Proceedings of

the 19th ACM International Symposium on High Performance Distributed Computing, ser. HPDC ’10. New York,

NY, USA: ACM, 2010, pp. 264–275.

[8] Argonne National Laboratory, “MPICH2: A high performance and portable implementation of MPI standard,”

Available from http://www.mcs.anl.gov/research/projects/mpich2/index.php.

[9] D. Buntinas, W. Gropp, and G. Mercier, “Design and evaluation of Nemesis, a scalable, low-latency, message-

passing communication subsystem,” in CCGRID ’06: Proceedings of the Sixth IEEEInternational Symposium on

Cluster Computing and the Grid.Washington, DC, USA: IEEE Computer Society, 2006, pp. 521–530.[Online].

Available: http://dx.doi.org/10.1109/CCGRID.2006.31

[10] D.Buntinas,G.Mercier and G.Gropp, “Implementation and evalution of shaed -memory commuication and

synchronization operations in MPICH2 using the Nemesis communication subsystem” paellel compute., vol. 33, no.

9, pp. 634-644 , 2007.

[11] “A study of the fault-tolerant PVFS2” Yoon H. Choi 1 , Wan H. Cho 2 , Hyeonsang Eom 3 , Heon Y. Yeom 4,

School of Computer Science and Engineering Seoul National University, Seoul 151-742, Korea.

[12] http://www.mpich.org.

[13] http://www.mpi-forum.org

[14] http://www.mcs.anl.gov/reserch/projects/mpich2

http://openmp.org/wp/about-openmp/
http://doi.acm.org/10.1145/1088149
http://www.mcs.anl.gov/research/projects/mpich2/index.php
http://dx.doi.org/10.1109/CCGRID.2006.31
http://www.mpich.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/reserch/projects/mpich2

