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Abstract- In this paper, new variant of Newton's method based on harmonic mean has been discussed and its sixth order 

convergence has been established. The method generates a sequence converging to the root with a suitable choice of 

initial approximation 𝑥0. In terms of computational cost, it requires evaluations of only two functions and two first order 

derivatives per iteration and the efficiency index of the proposed method is 1.5651. Proposed method has been compared 

with some existing methods. Proposed method is free from the evaluation of the second order derivative of the given 

function as required in the family of Chebyshev–Halley type methods. The efficiency of the method is verified on a 

number of numerical examples.  

 

Keywords- Newton's method, Iteration function, Order of convergence, Function evaluations, Efficiency index. 

 

I. INTRODUCTION 

 

In many branch of science and engineering, the nonlinear and transcendental problems of the form 𝑓(𝑥) = 0, are 

complex in nature. Since the exact solution of the problems are not always possible by the usual algebraic process, 

therefore numerical iterative methods such as Newton, secant methods are often used to obtain the approximate solution 

of such problems. Though these methods are very effective, but there are some limitations that they do not give the result 

as fast as required and takes several iterations or some time methods fails. There are so many methods developed on the 

improvement of quadratically convergent Newton’s method so as to get a better convergence order than Newton. This 

paper is concerned with the iterative methods for finding a simple root α, i.e. 𝑓(𝛼) = 0, and 𝑓′(𝛼) ≠ 0 of 𝑓(𝑥) = 0, 

where f : R → R, be the continuously differentiable real function. 
Now we consider the problem of finding a real zero of a function 𝑓: 𝐼 ⊂ 𝑅  𝑅. It can be determined as a fixed point 

of some iteration function 𝑔 by means of the one-point iteration method 𝑥𝑛+1 = 𝑔(𝑥𝑛),  𝑛 =  0, 1,⋯, where 𝑥0 is the 

starting value, The best known and the most widely used example of these types of methods is the classical Newton's 

method given by  

 

𝑥𝑛+1 = 𝑥𝑛  −  
𝑓(𝑥𝑛 )

𝑓ʹ 𝑥𝑛  
         𝑛 =  0, 1,⋯              (1) 

 

It converges quadratically to simple zeros and linearly to multiple zeros. In the literature, some of its modifications 

have been introduced in order to accelerate it or to get a method with a higher order of convergence at the expense of 

additional evaluations of functions, derivatives and changes in the points of iterations. If we consider the definition of 

efficiency index as 𝑝1/𝑚  where 𝑝 is the order of the method and 𝑚 is the number of functions evaluations required by the 

method (units of work per iteration), then the efficiency index of this method is 1.414. All these modifications are in the 

direction of increasing the local order of convergence to increase the efficiency index. The method developed by 

Weerakoon et. al. [1], called as trapezoidal Newton's method or arithmetic mean Newton's method, suggests for some 

other variants of Newton's method. Frontini et. al. [9] developed new modifications of Newton’s method to produce 

iterative methods with third order of convergence and efficiency index 1.442. With the same efficiency index, Ozban [2], 

and Traub [23] developed a third order method requiring one function and two first derivatives evaluations per iteration. 

Chen [10] described some new iterative formulae having third order convergence. Ostrowski [7] developed both third 

and fourth order methods each requiring evaluations of two functions and one derivative per iteration. Neta [19] 

developed a family of sixth order methods which requires evaluations of three functions and one first derivative per 

iteration. Sharma et. al. [22] developed a one parameter family of sixth order methods based on Ostrowski fourth order 

multipoint method. Each family required three evaluations of the given function and one evaluation of the derivative per 

iteration. Chun [6] presented a one parameter family of variants of Jarratt’s fourth order method for solving nonlinear 

equations. It is shown there that the order of convergence of each family member is improved from four to six even 

though it adds one evaluation of the function at the point iterated by Jarratt’s method per iteration. Kou et al. [11–13] 

presented a family of new variants of Chebyshev–Halley methods and also an improvement of Jarratt method. These new 

methods have sixth order of convergence although they only add one evaluation of the function at the point iterated by 

Chebyshev–Halley method and Jarratt method. Parhi et. al. [20] developed a sixth order method for nonlinear equations, 

by extending a third order method of Weerakoon et. al. [1] requires evaluations of two functions and two first derivatives 

per iteration. 
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II. DEFINITIONS 

 

Definition 1: If the sequence {𝑥𝑛/𝑛 ≥ 0} tends to a limit α in such a way that 

 

lim𝑥𝑛→𝛼

𝑥𝑛+1−𝛼

    (𝑥𝑛− 𝛼  )𝑝  
= 𝐶            (2) 

 

for some 𝐶 ≠ 0 and 𝑝 ≥ 1, then the order of convergence of the sequence is said to be 𝑝, and 𝐶 is known as asymptotic 

error constant. 

When 𝑝 = 1, 𝑝 = 2 or 𝑝 = 3, the sequence is said to convergence lineally, quadratically and cubically respectively. The 

value of 𝑝 is called the order of convergence of the method which produces the sequence {𝑥𝑛 : 𝑛 ≥ 0}. Let   𝑒𝑛 =  𝑥𝑛  − 𝛼 

then the relation 𝑒𝑛+1  = 𝐶𝑒𝑛
𝑝 + 𝑂(𝑒𝑛

𝑝+1) is called the error equation for the method, 𝑝 being the order of convergence. 

Definition 2: Efficiency index is simply defined as  𝑝1/𝑚  where 𝑝 is the order of the method and 𝑚 is the number of 

functions evaluations required by the method (units of work per iteration).  

Therefore, the efficiency index of Newton´s method is 1.414 and iterative methods with order of convergence three has 

efficiency index 1.442. 

 

III. DESCRIPTION OF THE METHODS 

 

Let α be a simple zero of a sufficiently differentiable function 𝑓 and consider the numerical solution of the equation 

𝑓 𝑥 = 0, then 

 

𝑓(𝑥) = 𝑓(𝑥𝑛)+  𝑓´(𝑡)
𝑥

𝑥𝑛
dt.            (3) 

 

Approximating 𝑓′ by 𝑓´(𝑥𝑛) on the interval [𝑥𝑛 , 𝑥], we get the value (𝑥 − 𝑥𝑛)𝑓′(𝑥𝑛 ) for the integral in (3) and then 

putting 𝑥 = 𝛼, we get, 0 ≈ 𝑓(𝑥𝑛) + ( 𝛼 − 𝑥𝑛)𝑓ʹ 𝑥𝑛 , therefore, an approximation for α, known as Newton’s method, is 

given by 𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛) 𝑓ʹ 𝑥𝑛  ,  𝑛 =  0, 1,⋯. On the other hand, if we approximate the integral in (3) by the 

trapezoidal rule and then putting 𝑥 = 𝛼, we obtain, 0 ≈ 𝑓 𝑥𝑛 + (1/2)(𝛼 − 𝑥𝑛)(𝑓ʹ 𝑥𝑛 + 𝑓´(𝛼)). Therefore, an 

approximation 𝑥𝑛+1 for α is given by 

 

𝑥𝑛+1 = 𝑥𝑛   −   
2𝑓(𝑥𝑛 )

𝑓ʹ(𝑥𝑛 )+𝑓ʹ(𝑥𝑛+1)
.  

 

Approximating the (𝑛 + 1)𝑡𝑕  value by the Newton's method on the right-hand side of the above equation, we have, 

 

𝑥𝑛+1 = 𝑥𝑛 −  
2𝑓(𝑥𝑛 )

𝑓ʹ(𝑥𝑛 )+𝑓ʹ(𝑧𝑛+1)
 ,   where  𝑧𝑛+1= 𝑥𝑛 − 𝑓(𝑥𝑛)/𝑓ʹ(𝑥𝑛)         (4) 

 

for 𝑛 =  0, 1,2,⋯, the trapezoidal Newton's method of Weerakoon et. al. [1]. Rewriting equation (4) as 

 

𝑥𝑛+1 =  𝑥𝑛 − 
𝑓(𝑥𝑛 )

(𝑓ʹ 𝑥𝑛  +𝑓ʹ 𝑧𝑛+1 )/2
,   𝑛 =  0, 1,⋯, 

 

and further we rewrite as: 

 

𝑧𝑛  = 𝑥𝑛 − 
𝑓(𝑥𝑛 )

(𝑓ʹ 𝑥𝑛  +𝑓ʹ 𝑦𝑛  )/2
,   𝑛 =  0, 1,⋯,         (5) 

 

So, this variant of Newton’s method can be viewed as obtained by using arithmetic mean of 𝑓ʹ 𝑥𝑛  and 𝑓ʹ 𝑦𝑛  instead of 

𝑓ʹ 𝑥𝑛  in Newton̒s method defined by (1) which was called as arithmetic mean Newton’s method. 

 

3.1. New Variant of Newton’s Method 

 

In (5) if we use the harmonic mean instead of arithmetic mean we get 

 

𝑦𝑛 = 𝑥𝑛 − 
𝑓(𝑥𝑛 )

𝑓ʹ 𝑥𝑛  
 ,           (6) 

 

𝑧𝑛   =  𝑥𝑛 − 
1

2
𝑓(𝑥𝑛)  

1

𝑓ʹ 𝑥𝑛  
+

1

𝑓ʹ 𝑦𝑛  
 .           (7) 

 

Again 
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𝑥𝑛+1 = 𝑧𝑛 − 
𝑓(𝑧𝑛 )

𝑓ʹ 𝑧𝑛  
,   𝑛 = 0,1,2,⋯          (8) 

 

Now using the linear interpolation on two points (𝑥𝑛 , 𝑓ʹ 𝑥𝑛 ) and (𝑦𝑛 , 𝑓ʹ 𝑦𝑛 ), we get, 

 

𝑓ʹ 𝑥 ≈
𝑥 − 𝑥𝑛

𝑦𝑛− 𝑥𝑛
𝑓ʹ 𝑦𝑛 +

𝑥− 𝑦𝑛

𝑥𝑛− 𝑦𝑛
𝑓ʹ 𝑥𝑛          (9) 

 

Thus, we approximate 𝑓ʹ 𝑧𝑛  as: 𝑓ʹ 𝑧𝑛 ≈
𝑧𝑛  − 𝑥𝑛

𝑦𝑛− 𝑥𝑛
𝑓ʹ 𝑦𝑛 +

𝑧𝑛− 𝑦𝑛

𝑥𝑛− 𝑦𝑛
𝑓ʹ 𝑥𝑛 , then 

 

𝑓ʹ 𝑧𝑛 ≈
1

2𝑓ʹ 𝑦𝑛  
 2𝑓ʹ 𝑥𝑛 𝑓ʹ 𝑦𝑛 −  𝑓ʹ 𝑥𝑛  ² +  𝑓ʹ 𝑦𝑛  ² .        (10) 

 

Therefore the proposed method can be written as follows: 

 

𝑦𝑛 = 𝑥𝑛 − 
𝑓(𝑥𝑛 )

𝑓ʹ 𝑥𝑛  
, 𝑧𝑛   =  𝑥𝑛 −  

1

2
𝑓(𝑥𝑛)  

1

𝑓ʹ 𝑥𝑛  
+

1

𝑓ʹ 𝑦𝑛  
 ,      (11) 

 

𝑥𝑛+1 = 𝑧𝑛 −
2𝑓 𝑧𝑛  𝑓ʹ 𝑦𝑛  

2𝑓ʹ 𝑥𝑛  𝑓ʹ 𝑦𝑛  − 𝑓ʹ 𝑥𝑛   ²+ 𝑓ʹ 𝑦𝑛   ²
 .         (12) 

 

Clearly this method requires evaluations of only two functions f and two derivative f´ and no second order derivative of f. 

 

IV. CONVERGENCE ANALYSIS 

 

Theorem 1: Let 𝛼 ∈ 𝐼 be a simple zero of a sufficiently differentiable function f: 𝐼 ⊂  𝑅  𝑅 for an open interval 𝛪. If 𝑥0 

is sufficiently close to α, then the methods defined by (12) has six order convergence.  

Proof.  Since 𝛼 ∈ 𝐼 is a simple zero of 𝑓, then, we have,  

 

𝑓(𝑥𝑛)  =  𝑓ʹ(𝛼) [ 𝑒𝑛+𝐶2𝑒𝑛
2+𝐶3𝑒𝑛

3+O(𝑒𝑛
4)],  where   𝐶𝑗  =  

1

𝑗 !
 𝑓(𝑗 )(α)/𝑓ʹ(𝛼),      (13) 

 

𝑓ʹ(𝑥𝑛)  = 𝑓ʹ(α) [1 + 2𝐶₂ 𝑒𝑛 + 3𝐶₃𝑒𝑛
2 + 4𝐶₄ 𝑒𝑛

3 + 𝑂(𝑒𝑛
4)].       (14) 

 

Now from equations (13), (14), we have,  𝑓(𝑥𝑛) 𝑓ʹ 𝑥𝑛  =  𝑒𝑛 − 𝐶2𝑒𝑛
2 + (2𝐶2

2 − 2𝐶3)𝑒𝑛
3 + 𝑂(𝑒𝑛

4). Therefore, from the 

first equation of (11), we get, 𝑦𝑛  = α + C₂𝑒𝑛
2 + (2𝐶₃-2𝐶2

2)𝑒𝑛
3 +O(𝑒𝑛

4). Now expanding 𝑓′(𝑦𝑛) about α, we get,  

 

𝑓ʹ(𝑦𝑛) = 𝑓ʹ(𝛼)[1 + 2𝐶2
2𝑒𝑛

2 + 4𝐶2(𝐶3 − 𝐶2
2)𝑒𝑛

3 + 𝑂(𝑒𝑛
4)].         (15) 

 

Substituting the value of equations (13), (14) and (15) in second equation of (11), we get, 

 

𝑧𝑛 = 𝛼 + 𝑒𝑛 −
1

2
 𝑒𝑛 + 𝐶2𝑒𝑛

2 + 𝐶3𝑒𝑛
3 + 𝑂 𝑒𝑛

4   
1

1+2𝐶2𝑒𝑛 +3𝐶3𝑒𝑛
2

+4𝐶4𝑒𝑛
3+𝑂 𝑒𝑛

4 
+

1

1+2𝐶2
2𝑒𝑛

2+4𝐶2(𝐶3−𝐶2
2)𝑒𝑛

3+𝑂(𝑒𝑛
4)
   

 

⇒ 𝑧𝑛 = 𝛼 +
1

2
𝐶3𝑒𝑛

3 + 𝑂 𝑒𝑛
4 .    

 

Again  

 

𝑓ʹ 𝑥𝑛 𝑓ʹ 𝑦𝑛 =  𝑓ʹ 𝛼  2[1 + 2𝐶2𝑒𝑛 +  2𝐶2
2 + 3𝐶3 𝑒𝑛

2 + 4(𝐶2𝐶3 + 𝐶4)𝑒𝑛
3 + 𝑂(𝑒𝑛

4)], 
 

 𝑓ʹ 𝑥𝑛  
2 =  𝑓ʹ 𝛼  2[1 + 4𝐶2𝑒𝑛 +  4𝐶2

2 + 6𝐶3 𝑒𝑛
2 + (12𝐶2𝐶3 + 8𝐶4)𝑒𝑛

3 + 𝑂(𝑒𝑛
4)], 

 
 𝑓ʹ 𝑦𝑛  

2 =  𝑓ʹ 𝛼  2[1 + 4𝐶2
2𝑒𝑛

2 + (8𝐶2𝐶3 − 8𝐶2
3)𝑒𝑛

3 + 𝑂(𝑒𝑛
4)]. 

 

Therefore from equation (10), we have, 𝑓ʹ 𝑧𝑛 ≈ 𝑓ʹ 𝛼 [1 − 2𝐶2𝐶3𝑒𝑛
3 + 𝑂(𝑒𝑛

4)]. Hence from 𝑥𝑛+1 = 𝑧𝑛 − 
𝑓(𝑧𝑛 )

𝑓ʹ 𝑧𝑛  
, we get,  

 

𝑥𝑛+1 = 𝛼 +
1

2
𝐶3𝑒𝑛

3 + 𝑂 𝑒𝑛
4 − 𝑓  𝛼 +

1

2
𝐶3𝑒𝑛

3 + 𝑂 𝑒𝑛
4  

1

𝑓ʹ 𝛼 
[1 − 2𝐶2𝐶3𝑒𝑛

3 + 𝑂(𝑒𝑛
4)]−1.  

 

Using Taylor’s expansion and the fact that 𝑓 𝛼 = 0, we get,  

 

𝑒𝑛+1 = −
3

4
𝐶2𝐶3

2𝑒𝑛
6 + 𝑂 𝑒𝑛

7 . 
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This shows that method defined by (12) has sixth order convergence. 

Remark: If second order derivative or third order derivative is be zero at the root then the order of convergence increases 

up to seven or eight. 

 

V. NUMERICAL RESULTS AND CONCLUSION 

 

In this section, we presented the results of some numerical tests to compare the efficiency of the proposed method. In 

Table 1, we give the number of iterations (N) and the number of function evaluations (NOFE) required satisfying the 

stopping criterion. PM denotes proposed method. Kou and Li is the method [13], an improvement of Jarratt method. 

Gupta denotes for [20] Parhi and Gupta, A sixth order method for nonlinear equations. Numerical computations have 

been carried out in MATLAB. The stopping criterion has been taken as |𝑥𝑛+1– α|+ |f (𝑥𝑛+1)| < 10−14. In Table 1 for 

simple roots following test functions have been used. 

 

Table 1 - Comparison with existing sixth order methods 

F(𝑥) 𝑥0 
 N    NOFE  

Kou and Li Gupta PM  Kou and Li Gupta PM 

(a) -0.7 17 33 4  68 132 16 

 1 2 2 2  8 8 8 

 3 2 3 2  8 12 8 

         

(b) 0.3 4 4 4  16 16 12 

 2 2 2 2  8 8 8 
 3 2 2 2  8 8 8 

         

(c) 0.5 4 5 4  16 20 16 

 2 2 2 2  8 8 8 
 3 2 2 2  8 8 8 

         

(d) 0.3 2 3 2  8 12 8 

 1 2 2 2  8 8 8 
         

(e) 0.3 2 2 2  8 8 8 

 0.5 2 2 2  8 8 8 

 0.7 3 2 2  12 8 8 

         

(f) 0.1 5 4 4  20 16 16 

 2.5 2 2 2  8 8 8 

 3.5 3 3 3  12 12 12 
         

(g) 0.8 3 3 3  12 12 12 

 1.5 3 4 3  12 16 12 

         
(h) 2 2 2 2  8 8 8 

 3 2 2 2  8 8 8 

 4 3 3 3  12 12 12 

         
(i) 1 180 9 57  720 36 228 

 3.5 5 6 5  20 24 20 

 4.5 8 11 9  320 44 36 
 

(a) 𝑥³ + 4 𝑥² - I0,                                  α = 1.365230013414097, 

(b) sin²𝑥 - 𝑥² + 1,                                 α = - 1.404491648215341, 

(c) 𝑥³-10                                              α = 2.154434690031884, 

(d) 𝑥³ - 𝑒−𝑥                                           α = 0.772882959149210, 

(e) 𝑥 sin (1/𝑥) - 0.2 𝑒−𝑥 ,                      α = 0.363715708657122, 

(f) (𝑥 - 1)³ - 1,                                      α = 2, 

(g) 𝑥10 − 1,                                          α = 1 

(h) 𝑥3 − 𝑒−𝑥 − 3𝑥 + 2,                       α = 0.257530285439861 

(i) (𝑥 − 2)23  – 1,                                  α = 3. 

Thus the proposed sixth order method for finding simple real roots of nonlinear equations, is free from second order 

derivative of the given function, as required in the family of  Chebyshev–Halley type methods. Method proposed in this 

paper requires evaluations of two functions and evaluations two first order derivatives per iteration. The convergence 

analysis of the method is performed to show that the order of convergence of the method is six. The high order 

convergence is also corroborated by numerical tests 
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Method has the efficiency index equal to 1.5651, which is better to Newton’s method with efficiency index equal to 

1.414 and the classical third order methods (1.442), such as Weerakoon and Fernando method, Chebyshev’s method, 

Halley’s method and Super-Halley method, fifth order method (1.495) of Kou, Li, Wang [24]. When compared with the 

sixth order methods of Parhi, Gupta, [20] and Kou and Li [13], proposed method behaves either similarly or better on the 

examples considered. 
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