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Abstract — Many methods have been proposed for community detection in networks . Community detection is the division 

of a network into dense sub networks with only sparse connections between them, has been a topic of vigorous study in 

recent year. In this paper, show that inference methods can be reduced to minimum cut partitioning problem, which 

helps to solve solution of the community detection problem. Here community inference, testing the resulting algorithm on 

computer generated and real world networks are perform by adapting the Laplacian spectral partitioning method 

both running time and quality of the results gives rival the best previous methods. 
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I. INTRODUCTION 

 

In recent years, the problem of community detection in a network is one of the most famous problems in research area. 

Many methods are used to determine community structure, but in recent years statistical inference methods used widely, 

because they give excellent results. In this paper, two fundamental methods is used, based on the stochastic block model 

or its degree corrected variant. It is possible to map both methods the minimum cut graph partitioning problem, for 

which we can take any available methods for graph partitioning to the community detection problem. Here Laplace 

spectral partitioning method is apply to derive a community detection method to get better results than the best currently 

available algorithms. 

  

II. LIKLIHOOD MAXIMIZATION FOR THE STOCHASTIC BLOCK MODEL 

 

Our first method is based on the stochastic block model, also known as the Planted partition model, is well known model 

of community structure in networks. Here we consider a network of n vertices and make some small groups or 

communities and there are different probabilities for different connections within and between groups. For  our simplicity, 

we consider only two groups of any size. In the model, edges are placed randomly between vertex pairs with probability pin  

for the pairs of same group and the probability pout  for the pair of different groups. In this paper, a Poisson distributed 

number of edges are placed for the pairs of in the same groups with mean ωin and for the pairs of different groups with 

ωout. The fraction of possible edges that are actually present in the real world network is very small, for which the model 

is describe in [7] and the Poisson version of the model are indistinguishable, but the analysis of Poisson version is 

preferred, because its analysis is more straightforward. The statistical inference of community structure is matter of 

answering the problem that what were the values if win and ωout used to generate the network and more importantly, 

which vertices fell in which group? We use maximum likelihood method to the question. Labeling the two 

communities or groups in our model by group1 and group2 and gi denote the group in which vertex i belongs. 

In the network, edges are represented by an adjacency matrix having elements  

 

                    A=  

 

Then in a network or graph of the likelihood G. Given a complete set of group membership, denoted by g and the poisson 

parameter denoted by ω and is given by 

P(G|g,ω) =  …. (2) 

 

Where, ωij is expected number of edges between I and j vertices is equal to ωin or ωout, depending on whether the vertices 

are belongs to the same group or different groups. Here we consider that in the network, there is no self loop. So Aii = 0 

for all i. 
By differentiating the likelihood was maximized with respect to the parameter ωin and ωout [7], 

 

In equation (2), we can apply this method which gives most likely values of ωin and ωout such that  

 

l  ,     ……………………………….(3) 

Where, min= observed number of edges with the groups. mout= observed number of edges between groups. 
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And n1 and n2 are the number of vertices in each group, group1 and group2. Putting these values in equation (2), we get the 

proper likelihood and it depends on the group labels only. 

Neglecting some unimportant constants, the logarithm of the profile likelihood is Q=  min 

ln (4) 

By maximizing this quantity, the communities are identified over all possible assignments of the vertices to the groups. 

In equation (4), at first the likelihood is maximized over ω, for fixed group assignment, and then group assignments. 

Considering reverse approach, for given ω , maximizing first over the group assignments and then ω at the end. This 

approach helps us in such a way that as we will show the standard of minimum cut graph partitioning is equivalent to the 

problem of maximizing with respect to the group assignments when ω is given for which many methods are available. 

And the remaining problem of maximizing with respect to ω after maximizing with respect to the group assignments is 

a one parameter optimization which can be trivially solved. 

The resulting algorithm is that the problem of maximum likelihood community detection is reduced to a well known 

method, graph partitioning with extra one step. 

So maximizing the logarithm L of the likelihood, 

L= ln P(G|g,ω) =  ln  - ln !]     …………………(5) 

 

Which gives the same result of the problem of maximizing the likelihood, equation (2) with respect to the group labels gi 

for given values of parameter ωin and ωout. 

For further steps, we write ωin and lnωij as ωij = δgigjωin  + (1 – δgigj )ωout …… (6) 

lnωij= δgigjlnωin + (1 – δgigj ) lnωout ……. (7)  

Here δij is Kronecker delta. 

Substituting these results in equation (5) and neglecting some terms, which have no effect in position of maximum, the 

likelihood can be written as 

 

    L= )(γ- ) ……………(8) 

Where                                         γ =     .          .…………………(9) 

Which gives the position value whenever ωin - ωout > ϒ, which means in our network, we have traditional community 

structure. 

And, ∑i <j (1 - δgigj ) is called cut size, which is the number of edges connecting vertices in different communities 

∑i <j (1 - δgigj ) = n1n2 …. (10) 

We previously denoted the cut size by mout, so the log likelihood is in the form  

L = - mout + ϒn1n2 …. (11) 

For maximizing equation (11), its dependent on the value of ϒ, which depend on ωin and ωout via (9). Then for simplicity, 

we consider maximization of (11), where the sizes n1 and n2 are considered fixed and so the term ϒn1n2 is a constant and 

we can neglect this term. Then in equation (11), -mout is the only term to be maximized. Now this problem is equivalent to 

the standard minimum cut problem of graph partitioning. 

In the two groups, there are (n+1) possible choices of the sizes. For each of these (n+1) possible choices, if we solve 

the minimum cut problem, then we will get (n+1) solutions and it is obvious that out of these (n+1) solutions, one of 

solution must be the solution to our overall maximum likelihood problem. To find that one solution, we simply 

calculate the profile likelihood equation (4), for each solution and in turn and find the one that gives the largest result. 

 

A. Spectral Algorithm:- 

For this approach, we consider spectral algorithm which is based on Laplace spectral bisection method of graph 

partitioning introduced by Fiedler [8, 9]. 

In this method we describe how to search an edge separator of a graph G. We can get two parts of the network G with the 

network G with the number of vertices n1 and n2 and also require the size of cutting edges (cut-size) to be small. 

This method shown that two parts of a network of specified sizes can be found with minimum cut-size by calculating the 

Fiedler vector which is a Eigen vector of Laplacian matrix of the network corresponding to the second smallest Eigen 

value. To get the Fiedler vector, the network is divided into group of required size n1 and n2 and assigning the n1 vertices 

to group1 and the remaining n2 to group2. 

A good feature is that in a single calculation in this approach, we can be known the entire one parameter family of 

minimum cut division of the network. For calculate the profile likelihood of the resulting divisions of the network, we 

calculate the Fiedler vector only once, and then sort the elements of Fiedler vector in decreasing order, then cut them into 

two groups in each of the n+1 possible ways. The maximum likelihood community division of the network is the one 

with the highest score. 
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 B. Degree Corrected Block model:- 

 

In case of most of real world networks, the standard block models gives the poor results because the degree distributions 

that real world network posses, it fails to explain. 

By replacing the expected number ωij of edges between i and j by the term kikjωij where ki is the degrees of vector I, the 

problem of the standard models can be solved. Then log likelihood and by profile likelihood is given as 

L= - +γκ1κ2 , Q = min ln + ln   ……………………..(12) 

 

Where k1 and k2 are the sum of the degrees of the vertices in the two groups. 

 

The maximized of L is reduced to a generalizes minimum cut partitioning problem, which again favors g balanced groups 

with a term proportional to k1k2. By the equivalent of our previous approach, holding k1 and k2 constant, without 

knowing the value of ϒ, we reduced the problem to a variant of the minimum cut problem. Again based on the graph 

Laplacian, a spectral algorithm for this problem can be derived. We can show for the standard spectral method that a good 

approximation of the minimum cut problem with fixed k1, k2 is given by the second Eigen vector of the generalized Eigen 

system Lv = λDv, not by the second Eigen vector of Lv. Again we find out the vector and make two groups of the vertices 

according to their vector elements and sizes and once again from this we have n+1, one parameter family of solutions 

which can be choose an overall winner by finding the one with the highest profile likelihood, equation (2). 

 

iii. Results:- 

 

This method is tested on a variety of networks and a good result is obtained. In first figure, figure1 it shows the result from 

tests on a large group of computer-generated networks- which were using the standard stochastic block model to generate 

themselves. In figure1, there are two parts. In our part, the result of profile likelihood for the families of n+1 solutions 

generated by the spectral calculation for networks with equally sized groups (top) and in second part, with unequal groups 

(bottom). 

 

 

 
 

FIG. 1: (a) Profile likelihood as a function of group size for candidate solutions generated from the spectral method for 

single network of n = 10000 vertices, generated using the standard (uncorrected) stochastic block model with equal group 

sizes of 5000 vertices each and a range of strengths of the community structure. Defining cin = nωin, cout = nωout, the 

curves are (top to bottom) cin = 80, 75, 70, 65, and 60, and cout = 100 – cin. The dashed vertical line indicates the true size 

of the planted communities. The curves have been displaced from one another vertically  for clarity. The vertical axis units 

are arbitrary because additive and multiplicative constants have been neglected in the definition of the log likelihood. (b) 

Profile likelihoods for the same parameter values but unequal groups of size 3000 and 7000. (c) The average fraction of 

vertices classified correctly for networks of 10000 vertices each and two equally sized groups. Each point is an average 

over 100 networks. Statistical errors are smaller than the points in all cases. The vertical dashed line indicates the position 

of the ―detectability threshold‖ at which community structure becomes formally undetectable [6, 14–16]. 

In the profile likelihood in each case, there is a clear peak at the correct group sizes, from which can say that the group 

membership of most vertices is correctly identified by the algorithm. The third part of figure1 gives the conclusion of 

the community structure by calculating the fraction of correctly identified vertices as a function of the strength of 

equally sized groups. The ―detectability threshold‖ is represented by the dashed vertical line, discussed in [6, 14- 17], every 

method of community detection must fail, below it. The algorithm is also fail below this point, but essentially works well 

all the way down to the transition, and the result is exact for the dense network [16]. 
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Figure2 shows the result of the Zachary’s ―karate club‖ network [6] and Adamic and Glance’s network of political blogs 

[9], that algorithm is working fast. Both have pronounced community structure and the division is found by spectral 

algorithm, the algorithm is working fast. The Lanczos method, an iteration methods are used to find Eigen vector which 

take time O(m) per iteration in which maximum likelihood profile can be achieved, where m is the number of edges in the 

network. The exact number of iteration is although not known; the number of iteration should be small. 

For the (n+1) different group, each group differs from other just because of single vertex movement between the groups. 

By changing the quantities appearing in equation (2) according to K1 ⇒k1- ki,  k2⇒ k2+ ki …. (13) 

min  ⇒ min- ∆m , mout ⇒mout  + ∆m …. (14) 

the vertex i moves between groups. Where ∆m is the number of edges between the group1 and i minus the edges 

between vertices of group2 and i. The changes of profile likelihood and these quantities can be found in time 

proportional to the degree of the vertex. So all the n vertices can be moved in time proportional to 2m, which is the 

sum of the degrees in the network. So the algorithm takes time m time of Lanczos iteration, which is treated as small, and 

so the method is fast as the best competing algorithm. 

 

 

 

 

 
FIG. 2: The division into two groups of two well-known networks from the literature. Top: the karate club network of 

Zachary [18]. Bottom: the network of political blogs compiled by Adamic and Glance [19]. Vertices colors and shapes 

indicate the group membership and both divisions are qualitatively similar to the accepted ones. 

 

CONCLUSION 

 

On this paper shown that, community detection in a network, maximum likelihood method can be reduced to a small 

family candidate solutions, where each of which itself a solution of well studied maximum cut graph partitioning 

problem. As an example, to test its performance on both the real work and synthetic networks, the Laplacian spectral 

partitioning method is used. 

In future, we can study more general forms of the parameter ω, for different values of ωin and ωout for more than two 

groups. 
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