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Abstract —This paper presents a pipelined radix-2 FFT processor, which is efficient in terms of its delay, power and 

area, to process two independent data streams concurrently. This processor generates outputs in natural order without 

using bit reversal circuits. The shift registers, which are used to delay the data samples, perform bit reversal operation 

also. This FFT uses two N/2-point multipath delay commutator FFT architectures to process even and odd samples of 

two data streams separately. This FFT processor uses Kogge-Stone adders and Dadda multipliers in its butterfly 

processing units. The Kogge-stone adder is a parallel prefix form of carry look ahead adder and widely used high 

performance adder in the industries of the present day. Since the adder used generates the carry signal in O(log2n) time, 

it is widely considered to be the fastest adder design possible. The Dadda multiplier is based on row reduction of partial 

products by compressing columns using less full adders and half adders compared to the conventional multipliers. Thus, 

the Dadda multiplier’s speed is more and takes less hardware. Therefore, by using the Kogge-Stone adders and Dadda 

multipliers in butterfly processing units, the proposed FFT processor has less delay, less area and consumes less power 

compared to the  conventional FFT architectures. 
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I. INTRODUCTION 

 

The fast Fourier transform (FFT) algorithm has been widely used in many discrete-time signal processing 

systems. Many advanced communication systems including digital audio broadcasting (DAB), digital video broadcasting 

(DVB), wireless networks all require a core FFT module to process the orthogonal frequency division multiplexing 

(OFDM) function. Therefore, designing of an efficient dedicated FFT circuit is a very important issue. Pipeline FFT 

design is a popular FFT design used in the field of MIMO-OFDM.  This approach allocates the individual dedicated data-

path for each FFT processing stage to achieve a high level of parallel processing. So it is good for high-throughput real-

time FFT applications. As for pipeline schemes, single-path delay feedback (SDF) and multipath delay commutator 

(MDC) are the two most popular architectures [1]. 

SDF-based architectures provide memory feedback paths to manage some butterfly outputs during each stage. 

Additionally, SDF techniques allow the initial FFT output sample to be generated instantly after the final FFT input 

sample has been processed. MDC-based architectures in comparison replace feedback data paths with feed forward data 

paths with commutators as switching operations, where each stage forwards its obtained output to the next without any 

feedback occurring. Sansaloniet al.[2]suggested that MDC could save more area than SDF in FFT with multiple streams, 

and Fu implemented a four-stream MDC FFT/IFFT processor in which the area was 75% that of conventional designs 

[3]. 

Many applications such as MIMO-OFDM, image processing, signal processing and so on require multiple FFT 

operations simultaneously. Most of the FFT architectures produce outputs in bit reversal order which further require bit 

reversal circuits to generate normal order outputs. In [4]-[6], the architectures process multiple independent data streams 

using single FFT, so they take more time to generate outputs of all data streams one by one and extra bit reversal circuits 

are required to generate normal order outputs. Therefore, overall delay is more in these architectures. There exists a 

combined SDC-SDF FFT which gives normal order output but its throughput is low. In [7], a new FFT architecture is 

proposed for processing two data streams in normal input-output order. Its speed more compared to previous FFT 

processors. However, its performance can be improve even more. 

The fundamental operations involved in any Digital systems are addition and multiplication. Fast and accurate 

operation of digital system depends on the performance of adders and multipliers. Improving the speed by reduction in 

area is the main area of research in VLSI system design. In this paper, the proposed FFT processor usesKogg-Stone (KS) 

adder and Dadda multipliers in the butterfly processing units. KS adder is fastest adder when compared to other 

conventional tree adders due to the number of reduced stages. KS adder implementation is the most straightforward, and 

also it has one of the shortest critical paths of all tree adders. It is the most common architecture for high-performance 

adders in industry.The Dadda multiplier is based on column compression of partial products using full and half adders. 

There are three stages in multiplication process. First stage contains partial product tree. That tree is compressed to two 

rows in second stage. Carry propagation adder (CPA) combines these two rows in the last stage. 
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II. RADIX-2 MDC FFT ARCHITECTURE TO PROCESS TWO DATA STREAMS 

 

A radix-2 pipelined MDC FFT architecture [7] is designed to process two independent data streams concurrently 

with its outputs in normal order. To generate normal output order, the processor does not use any additional bit reversal 

circuits. It uses shift registers in its architecture for bit reversal operation. But the shift registers actual purpose is to delay 

samples to forward correct samples to butterfly processing elements (BPEs). Thus, the shift registers perform dual role. 

The delay commutator units disassociates the even and odd samples of two data streams and then they are forwarded to 

two N/2-point DIF and DIT MDC FFTs by using switches. The outputs of the two N/2-point FFTs are forwarded to two-

parallel butterfly units to generate N-point FFT outputs in natural order. This architecture has high throughput and less 

hardware compared to conventional FFT architectures. 

 

2.1 Operation of the FFT Processor 

 

 For the purpose of simplicity, an eight-point FFT architecture is shown in Figure 1. The FFT architecture is 

divided into eight blocks named as A1, A2, A3, B1, B2, B3, SWT1 and SWT2. The two input data streams are divided 

into even and odd data streams in A1/B1 blocks which are delay commutator blocks. The even data samples are 

forwarded to A2 block which is N/2-point DIF MDC FFT. The odd data samples are forwarded to B2 block which is 

N/2-point DIT MDC FFT. To get the final outputs of N-point FFT operation, the outputs of two N/2-point FFTs are 

processed in A3/B3 blocks which contain two-parallel butterfly units. Thus the final output comes in natural order. By 

using switches (SWT1 and SWT2) the samples are forwarded from one block to another block. If SWT1 is in normal 

mode, the SWT2 is in swap mode and vice versa. They reverse their modes for every N/2 clock cycles. Reordering shift 

registers (RSRs) [8] in A1 and B1 are used for bit reversing the odd samples and then they are forwarded to N/2 point 

DIT FFT block. RSRs in A3 and B3 are used for bit reversing the outputs of N/2 point DIF FFT block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Eight-point radix-2 pipelined FFT architecture with inputs and outputs in normal order 

 

 Data propagation of two data streams through different blocks to process eight-point FFT operations is 

explained below. 

1. In the first four clock cycles, the SWT1 and SWT2 are in swap mode and normal mode respectively. The 

first four samples of x1 are loaded into the registers of A1 block. In the next four clock cycles, the SWT1 

and SWT2 are in normal mode and swap mode respectively. The even samples of x1 are forwarded from A1 

to A2 to perform four-point DIF FFT operation. Meanwhile, the first four samples of x2 are loaded into the 

registers of B1 block. 

2. After four clock cycles, the SWT1 and SWT2 are in swap mode and normal mode respectively. The outputs 

of A2 are forwarded to A3 and stored in the shift registers of A3. At the same time, the odd samples of x1 

are bit reversed in A1 and then forwarded to B2 to perform four-point DIT FFT operation.The even samples 

of x2 are forwarded from B1 to A2 to perform four-point DIF FFT operation. 

3. After four clock cycles, the SWT1 and SWT2 are in normal mode and swap mode respectively.The outputs 

of B2 are forwarded to A3 and then combined with stored outputs of A2 blockto perform butterfly 

operations. Thus,eight-point FFT output of x1is generated with natural order. Simultaneously, the outputs of 

A2 are forwarded to B3 and stored in the shift registers of B3 block.The odd samples of x2 are bit reversed 

in B1 and then forwarded to B2 to perform four-point DIT FFT operation. 

4. In the next four clock cycles, the SWT1 and SWT2 are in swap mode and normal mode respectively. The 

outputs of B2 are forwarded to B3 and then combined with stored outputs of A2 block to perform butterfly 

operations. Thus, eight-point FFT output of x2is generated with natural order. 
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 This architecture requires less registers and its throughput is more compared to single input stream FFT 

architectures [4]-[6]. 

 

III. PERFORMANCE EFFICIENT FFT WITH KS ADDERS AND DADDA MULTIPLIERS 

 

The main aim of this paper is to improve FFT performance by decreasing the delay, reducing the area and power 

efficiently. The adders and multipliers in the butterfly processing units (BPEs) of the FFT architecture decides the 

performance of the FFT processor. To achieve high performance, the FFT architecture usesKogge-Stone adders and 

Dadda multipliers in BPEs. The Kogge-Stone (KS) adder is one of the fundamental tree adders that are widely used in 

high-performance processors. The Dadda multiplier is a fast tree multiplier which requires less half adders and full 

adders in its architecture. In this paper, the performance of the proposed FFT architecture, which uses the KS adder and 

Dadda multipliers, is compared with the performance of FFT, which uses Ripple Carry (RC) adders and Dadda 

multipliers, and also with the performance of the FFT architecture [7] which uses RC adders and array multipliers. The 

operations of KS adder and Dadda multiplier are discussed in sub sections. 

 

3.1.Kogge-Stone Adder 

 

 The Kogge-Stone adder is a parallel prefix form of carry look-ahead adder. The KS adder concept was first 

developed by Peter M. Kogge and Harold S. Stone [9]. It is the fastest parallel prefix adder which generates carry signals 

in O(log2n) time, where n is the size of adder input. It takes more area, but has a lower fan-out at each stage, which 

increases performance for typical CMOS process nodes. Tree graph of an 8x8 bit KS adder is shown in Figure 2.  

 

 
Figure 2. 8x8-bit Kogge-Stone parallel prefix adder tree graph 

 

Algorithm of KS adder contains three computational stages. They are 

1. Pre-processing stage 

2. Carry generation network stage 

3. Post processing stage 

 

3.1.1. Pre-processing Stage: Pre-processing is the first stage where the generate and propagate signals of all the input 

pairs of signals A and B are generated separately for each bit. The logical equations of the propagate and generate signals 

are given by the following equations: 

    Pi    = Ai XOR Bi          (1) 

    Gi= AiAND Bi       (2) 

3.1.2. Carry Generation Network Stage:At this stage the carries of all the bits are generated separately for each bit. 

They are divided into smaller pieces and this overall process is carried out in parallel for all the bits. Carry generate and 

carry propagate bits are used as intermediate signals and their logical equations are given as follows: 

    CPi : j =Pi : k+1 and Pk : j     (3) 

    CGi : j=Gi : k+1 OR (Pi : k +1 ANDGk : j )        (4) 
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3.1.3. Post Processing Stage:This is the last stage of the KS adder which is common for all types of adders, i.e., 

calculation of summation of the bits, given by the logical equations: 

    Ci-1 = (Pi AND Cin) OR Gi      (5) 

    Si = Pi XOR Ci-1      (6) 

 

3.2.Dadda Multiplier 

 

 Dadda multiplier is an efficient column compression multiplier.This multiplier was invented by computer 

scientist LuigiDadda [10].The multiplication processoccur in three stages. In the first stage, the partial products matrix is 

generated by using N
2
 AND gates. The second stagecontains a set of row reduction levels where the partial productmatrix 

is compressed to two rows.  The row reduction is processed by placing adders at maximum heights of matrix in optimal 

manner. This makes the Dadda multiplier less costly inthe reduction stage. The partialproducts which are not covered 

under adders are forwarded tonext level unchanged. In the last stage, a carry propagatingadder is used to add the two 

rows so that the final multiplicationresult will come. 

 

 
Figure 3. Algorithm for 8x8 bit Dadda multiplier 

The reduction process for a Dadda multiplier is developedusing the following recursive algorithm [11]. 

1. Let d1 = 2 and dj+1 = 1.5 ∗ 𝑑𝑗  , where j = 1, 2, 3, and so on and djis the height of the partial product matrix for 

the level j. Repeat until the largest j
th
 level height does not exceeds the original partial product matrix maximum 

height. 

2. In the j
th

level from the end, place the full and half adders as needed to achieve a reduced matrix. The columns 

with more than djdots and the columns, which receive carries from previous level full and half adders, are 

compressed. 

3. Repeat the second step by letting j = j –1, until a matrix generated with a height of two. This should occur only 

when j = 1. 

 

 Application of this recursive algorithm producesthe dotdiagram for the 8x8-bit Dadda multiplier shown in 

Figure 3. A Dadda multiplier [11] requires N
2 

– 4N + 3 number of full adders and N – 1 half adders, where N is the size 

of the operands. The size of final carry propagation adder is 2N–2. The major advantages oftheDadda multiplier is that it 

requires less number of adders compared to that of other conventional multipliers. This makes the Dadda multiplier an 

efficient multiplier architecture for FFT processors. 

 

IV. RESULTS 

 

 The proposed FFT processor, which uses KS adders and Dadda multipliers in its BPEs, was implemented in 

Verilog HDL. The design was synthesized on Xilinx Vertex-5 FPGA with XC5VLX110T device, FF1136 package, -1 
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speed with a word length of 8 bits.The corresponding simulation results of area, delay and power for different FFTsizes 

(N)are shown in Table 1, Table 2 and Table 3. The simulation results of proposed KD FFT are compared with those of 

RD FFT and FFT in [7]. Here, KD FFT means FFT with KS adders and Dadda multipliers. RD FFT means FFT with RC 

adders and Dadda multipliers whereas FFT in [7] uses RC adders and array multipliers. 

 

Table 1. Simulation Results of FPGA for Area 

FFT Size (N) Architecture 
Area 

Slice Registers Slice LUTS Occupied Slices 

8 

FFT [7] 64 549 393 

RD FFT 64 534 329 

KD FFT 64 514 278 

16 

FFT [7] 128 1761 1039 

RD FFT 128 1722 955 

KD FFT 128 1640 880 

 

 From the simulation results of area, observe that the proposed KD FFT uses less number of look-up tables 

(LUTs) and less occupied slices compared to that of the other two FFT architectures. This is due to the fact that the KS 

adder and Dadda multiplier uses less hardware compared to the other conventional adders and multipliers. Therefore, the 

proposed FFT processor with KS adders and Dadda multipliers is efficient in terms of area. 

 

Table 2. Simulation Results of FPGA for Delay 

Architecture 
Delay (ns) 

N=8 N=16 N=32 N=64 

FFT [7] 19.662 25.886 31.055 36.903 

RD FFT 11.762 14.981 17.496 20.722 

KD FFT 9.896 13.339 16.327 19.957 

  

 From the simulation results of delay, observe that the proposed KD FFT has less delay for different FFT sizes 

when compared with that of other two FFT architectures. This is due to fact that KS adder generates carry signal faster 

than other conventional adders and the Dadda multiplier uses less adders so the time taken to compute multiplication is 

reduced. Therefore, by using these faster adders and multipliers, the proposed FFT processor is efficient in terms of 

delay. 

Table 3. Simulation Results of FPGA for Power 

Architecture 
Power (mW) 

N=8 N=16 

FFT [7] 1051.90 1060.97 

RD FFT 1048.93 1054.73 

KDFFT 1047.24 1053.52 

  

 From the simulation results of power, it is found that the proposed KD FFT consumes less power compared to 

that ofRD FFT and FFT in [7]. For smaller FFT sizes, there is no much variation in the power consumption. But for 

higher FFT sizes, the power consumption of proposed FFT will be reduced more to that of existing FFT. 

 The simulation results of area, delay and power, shows that the proposed FFT’s performance improved 

compared to the existing and conventional FFTs. 

 

V. CONCLUSION 

 

In this paper, a performance efficient FFT processor is implemented which uses Kogge-Stone adders and Dadda 

multipliers in the butterfly processing elements to improve the performance of the FFT operation. The Kogge-Stone 

adder is a faster adder as it generates carry signals in less time. Thus, the adder is used in high-performance processors. 

The Dadda multiplier is faster as it uses less adders compared to other conventional multipliers. So by using these adders 

and multipliers, the overall FFT architecture uses less adders and also faster. The architecture processes two data streams 

simultaneously so its speed is more compared to single data stream FFT architectures. Thus, this architecture is useful for 

high speed real time MIMO applications. Simulation results shows that the proposed KD FFT processor has less area, 

less delay and consumes less power when compared to that of RD FFT and existing FFT architectures. Therefore, the 

implemented FFT processor is efficient in terms of its hardware and speed and power consumption. Thus, the FFT 

processor is useful for the applications which require high performance. 
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