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Abstract -This paper empirically examines the various ways of balancing the binary search tree. Since we know how to 

construct a binary search tree the only thing left is to keep it balanced. Obviously, we will need to re-balance the tree on 

each insert and delete, which will make this data structure more difficult to maintain compared to non-balanced search trees, 

but searching into it will be significantly faster. 
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I. INTRODUCTION 

 

Binary search trees (BST) are a particular type of container (i.e.) data structures that store "items" (such as numbers, 

names etc.) in memory [1]. They allow fast lookup, addition and removal of items, and can be used to implement either 

dynamic sets of items or lookup tables that allow finding an item by its key [2]. 

 

II. BINARY SEARCH TREE 

 

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned properties. The left sub-

tree of a node has a key less than or equal to its parent node's key. The right sub-tree of a node has a key greater than to its 

parent node's key [3] [1]. A self-balancing search tree is any node-based binary search tree that automatically keeps its height 

(maximal number of levels below the root) small in the face of arbitrary item insertions and deletions [4]. These structures 

provide efficient implementations for mutable ordered lists, and can be used for other abstract data structures such as 

associative arrays, priority queues and sets. 

 

The red–black tree, which is a type of self-balancing binary search tree, was called symmetric binary B-tree and was 

renamed but can still be confused with the generic concept of self-balancing binary search tree because of the initials [5] [2]. 

The main disadvantage is that we should always implement a balanced binary search tree - AVL tree, Red-Black tree, Splay 

tree. Otherwise, the cost of operations may not be logarithmic and degenerate into a linear search on an array 

 

3.1 AVL Tree 

 

An AVL tree is another balanced binary search tree. Named after their inventors, Adelson-Velskii and Landis, they 

were the first dynamically balanced trees to be proposed, they are not perfectly balanced, but pairs of sub-trees differ in 

height by at most 1, maintaining an O (logn) search time [5] [1]. 

 

3.1.1 Example of an AVL search tree 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: AVL Search Tree 
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Examination shows that each left sub-tree has a height 1 greater than each right sub-tree. Suppose a new key is 

inserted into this tree but once the new key is added we must update the balance factor of its parent if the balance factor is 

affected you can perform some kind of rotation to balance the avl tree according to the type of key is inserted [6]. 

 

3.1.2 AVL rotations 

 

a. LL Rotation 

b. RR Rotation 

c. LR Rotation 

d. RL Rotation 

 

3. 2 Weight-balanced trees 

 

A weight-balanced tree is a binary search tree that stores the sizes of subtrees in the nodes [6] [3]. That is, a node has 

fields 

 

a. key, of any ordered type 

b. value (optional, only for mappings) 

c. left, right, pointer to node 

d. Size of type integer. 

 

By definition, the size of a leaf (typically represented by a nil pointer) is zero. The size of an internal node is the sum of 

sizes of its two children, plus one (size[n] = size[n.left] + size[n.right] + 1). Based on the size, one defines the weight as 

weight[n] = size[n] + 1 [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Weighted-Balanced Trees 

 

3.2.1  Binary tree rotations 

 

Operations that modify the tree must make sure that the weight of the left and right subtrees of every node remain within 

some factor α of each other, using the same rebalancing operations used in AVL trees: rotations and double rotations [8]. 

Formally, node balance is defined as follows: 

 

node is α-weight-balanced if weight[n.left] ≥ α·weight[n] and weight[n.right] ≥ α·weight[n].[7] 

 

Here, α is a numerical parameter to be determined when implementing weight balanced trees [9]. Larger values of α 

produce "more balanced" trees, but not all values of α are appropriate; Nievergelt and Reingold proved that. 

https://en.wikipedia.org/wiki/Tree_rotation
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3.3 A red–black tree 

 

It is a kind of self-balancing binary search tree. Each node of the binary tree has an extra bit, and that bit is often 

interpreted as the color (red or black) of the node [10] [2]. These color bits are used to ensure the tree remains approximately 

balanced during insertions and deletions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Red-Black Tree 

 

3.4 Splay trees 

 

Splay tree is another variant of binary search tree [11]. In a splay tree, the recently accessed element is placed at the root 

of the tree. A splay tree is defined as follows:  

 

 Splay Tree is a self - adjusted Binary Search Tree in which every operation on an element rearrange the tree so that 

the element is placed at the root position of the tree. 

 In a splay tree, every operation is performed at root of the tree. All the operations on a splay tree are involved with a 

common operation called "Splaying". 

 Splaying an element is the process of bringing it to the root position by performing suitable rotation operations. 

 In a splay tree, splaying an element rearrange all the elements in the tree so that splayed element is placed at root of 

the tree [12]. 

 

With the help of splaying an element we can bring most frequently used element closer to the root of the tree so that any 

operation on those elements performed quickly [13] [14]. That means the splaying operation automatically brings more 

frequently used elements closer to the root of the tree.  

 

Every operation on a splay tree performs the splaying operation. For example, the insertion operation first inserts the new 

element as it inserted into the binary search tree, after insertion the newly inserted element is splayed so that it is placed at 

root of the tree [15] [16]. The search operation in a splay tree is search the element using binary search process then splay the 

searched element so that it placed at the root of the tree. In a splay tree, to splay any element we use the following rotation 

operations: 

 

4 

2 6 

1 3 5 8 

7 9 
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3.4.1 Rotations in Splay Tree 

 

a. zig rotation 

b. zag rotation 

c. zig-zig rotation 

d. zag-zag rotation 

e. zig-zag rotation 

f. zag-zig rotation 

 

4 Conclusion 

 

Although it is known that if input is random, we will be closer to a balanced tree [17] [18]. Still some balancing 

technique is required to prevent the tree from becoming higher on one side resulting after a series of insertions and deletions 

[19] [20]. Ultimate goal is to maintain the tree in such way that its height is always 

 

O(lg(n)) so that all basic tree operations could be performed in O(lg(n)) time 
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