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Abstract: A methodology for landslide susceptibility assessment and mapping in a GIS environment through multi-

criteria decision analysis (MCDA) is presented. Landslides belong to the severe natural disasters which are often 

experienced in Greece and have become a significant concern mainly in the mountainous areas. In this paper, the 

Analytic Hierarchy Process (AHP) was applied with a varied weighted linear approach to identify the landslide 

potential associated with the terrain aiming at contributing in landslide risk assessment evaluation. The study was 

focused on landslide susceptibility mapping in Atalanti catchment located in Central Greece, employing spatial analysis 

of factors influencing the landslide occurrence. GIS is a useful tool for the construction of landslide prediction model 

and for application in regional planning, risk management and hazard mitigation as well as early warning for the 

prioritization of efforts to reduce future landslide hazards. In total, twelve dataset layers including slope angle, slope 

aspect, rainfall, geology-lithology, curvature, elevation, land use, proximity to the rivers, faults and roads, 

topogragraphic wetness index (TWI) and stream power index (SPI) were selected as the causative factors for the 

analysis. Digital elevation model (DEM) of 25x25m resolution was used to extract the topographic, geological, 

geomorphological, hydrological, land use and climatic related landslide causative-instability factors. The final 

susceptibility score was classified into susceptible rating values based on the factors’ importance and the spatially 

generated layers were assembled to produce the final landslide indexed susceptibility assessment map. According to the 

map, 30.4% area of the region is moderately susceptible to the occurrence of landslides, 30.0% area is low to 

moderate, 19.8% is low, 14.3% is moderate to high and only 3.1% is high to very high susceptible to the landslides’ 

occurrences. Validation results and sensitivity analysis based on landslide inventory showed that this model could be 

used for the prediction of future landslides since almost 81.8% correspond to areas where landslide phenomena were 

actually took place. Finally, the analysis of the susceptibility modeling showed the high importance of slope, rainfall, 

geology and tectonics parameters. 
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1. Introduction 

Landslide is a major geohazard that can be triggered by earthquakes, volcanic eruptions or by human-made activities 

(Carrara, 1983; Dai et al., 2001). Knowledge of the probability and timing of a landslide event as well as its intensity is 

particularly useful for project control and design for natural and urban planning. Mapping susceptibility to landslides 

and slope failures is of particular importance as they are one of the most serious natural disasters causing more and 

more losses in both human lives and infrastructure (Ladas et al., 2007; Sarkar et al., 2004). Landslides are the result of 

complex interaction among several factors primarily involving geological, geomorphological and hydrometeorological 

factors. Successful use of new geoinformatics-based technologies is now an important aid to assessing the conditions in 

a geo-environment that is threatened and/or destroyed. In this context, the possibility of applying qualitative and 

quantitative methodologies for the mapping of landslide susceptibility in the wider study area is investigated. The main 

goal is the map production, which band the areas according to the intensity of the expected risk in landslide. A landslide 

susceptibility map depicts the areas (or area zones) likely to have landslides in the future, associating some of the main 

factors that contributed to the occurrence of previous recorded landslides of slope failures. Its reliability depends mainly 

on the quantity and quality of available geographic data, the scale of work and the choice of the appropriate analysis 

methods (Shahabi et al., 2015; Tazik et al., 2014). 

The methods of mapping susceptibility to landslides are based on Geographic Information Systems (GIS) and divided 

into two groups: qualitative and quantitative. Qualitative methods depend on the knowledge and the experts’ opinions 

and consequently they are accompanied by a high degree of subjectivity. The method of using indicators or parametric 

maps is subdivided into two approaches: the combination or superposition of index maps and logical analytical models. 

These two approaches can be described as semi-quantitative as they incorporate the idea of ranking and weighting. 

Quantitative – statistical methods are based on the numerical expressions of relationships between controllers and the 

landslide occurrences, including statistical estimation of combinations of factors that led to landslides in the past and 

then their performance for regions not yet affected by landslides, but show the same background conditions 

(multivariate statistical analysis methods). The basis of most landslide studies in a regional scale is the construction of a 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 6, Issue 04, April-2019, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 
 

@IJAERD-2019, All rights Reserved  133 

landslide inventory map, the independent factors causing landslides, the applied method to determine the parameters’ 

weights and the final landslide susceptibility map within a GIS environment. These can be used to compute landslide 

susceptibility maps depicting the spatial probability of slope failures using a wide range of approaches using GIS as an 

effective tool for managing and manipulating the spatial data. Several researchers (Atkinson et al., 1998; Carrara et al., 

1991; 1999; 2003; 2008; Chau et al., 2004; Chung et al., 2003; Gupta et al., 1990; Kumar et al., 2013; Rozos et al., 

2010; 2011) have used multi-criteria decision analysis (MCDA) techniques as a spatial analysis with GIS processing 

tools, from which the most common one is the Analytic Hierarchy Process (AHP) presented by Saaty (1977; 1980; 

1990; 2000), a semi-quantitative method to assign weights to the landslide related triggering parameters through a 

weighted linear combination technique (WLC) to produce landslide susceptibility maps ().  
 

2. Materials and Methods 

2.1 Location Area 

The Atalanti watershed lies between 21044΄-24039 longitudes and 37045-39029΄ latitudes at Lokrida province (Lokri 

municipality) covering an area of approximately 248 km2 and perimeter of 105 km in Eastern-Central Greece (Fig.1). 

The drainage basin has flat relief in lowlands with gentle slopes up to 200 (~85%) and steeper ones in highlands with 

slopes up to 550 (~3%). The study area is washed by the sea at the East surrounded by hilly and mountainous ranges 

such as Mt. Chlomo (Lappas, 2018) forming a quite complex geomorphology. Also, the catchment’s elevation begins 

from the sea level ending up to 1073 m (a.s.l.) crossed by dense and well developed, dendritic to sub-dendritic drainage 

network with several kilometers of length discharging into Aegean Sea. The flat and hilly terrain covers 76% of the 

whole basin area mostly concerning the coastal areas while the rest 24% belongs to mountainous areas. Moreover, 

within Atalanti watershed, there are only seasonal streams, namely, Alargino, Karagkiozis (4th order by Strahler) and 

Ag. Ioannis (3rd order by Strahler) flowing during winter and spring and form typical V-shape rejuvenated valleys as a 

result of the intensively active tectonics. Within the southern mountainous range one can observe streams with very 

steep slopes and deep river bed, especially when carbonate rocks prevail. Finally, the regional area is characterized by 

mild wet winters and hot, dry summers (typical Mediterranean climate with Csa type according to Köppen classification) 

with the mean annual precipitation and the air temperature equals to 819.1 mm and 16.80C respectively (Lappas, 2018). 

Almost 75% of the total rainfall takes place in the wet season from October to April with significantly rainfall non-

uniformity between the lowlands and highlands. 

 
Fig.1: The Atalanti watershed location and geomorphology with its contributing drainage network. 

 

2.2 Input Data 

The geo-referenced in GGRS 87 coordinating system topographic maps of 20m and 4m interval (scale from 1:5.000 to 

1:50,000) were obtained from the Hellenic Military Geographical Service (HMGS) where the drainage network of the 

Atalanti watershed is also delineated. According to the aforementioned maps the DEM of 25m grid cell resolution was 
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derived and several calculations were also determined such as the slope, the aspect, the topographic zones as well as the 

distances to faulting zones, transportation and drainage. Moreover, the geological maps from the regional area of 

interest (scale 1:50.000) were obtained from the Institute of Geology and Mineral Exploration (IGME) to geologically 

and tectonically characterize the formations concerning their contribution to landslides (Maratos et al., 1965). 

Furthermore, monthly and annual rainfall dataset for a large time period (1981-2014) from 35 meteorological and rain 

gauge stations covering the regional area were obtained from the Hellenic National Meteorological Service (HNMS) 

and the Ministry of Environment and Energy. Especially, monthly precipitation data from 1963 to 2014 were used from 

the Atalanti rain gauge station within the river basin under research. Rainfall data within and around the catchment area 

were finally used to process rainfall factors at each station and then these point data were spatially interpolated to each 

raster cell in the study area. Also, through CORINE Land Cover (2012), the study area’s land use was identified and 

classified according to landslide susceptibility. All the aforementioned base and derived thematic spatial maps were pre-

processed, analyzed and integrated together in a raster GIS environment transformed into a grid spatial database and 

classified into seven classes on the basis of theirs effect on landslides to display spatial information in order to identify 

the landslide prone areas. At the end, historical recorded landslides occurrences (19) were used to validate the results 

based on the landslide inventory database of the Institute of Geology and Mineral Exploration (IGME). 

 

2.3 Methodology Analysis 

A semi-quantitative index-based model was selected and developed in a GIS geo-processing environment defining 

landslide susceptibility areas through the weighting for expressing each criterion’s importance to other criteria. The 

Multi-Criteria Decision Analysis (MCDA) process was performed in order to determine the landslide causative factors 

analyzing a series of alternatives with a view to ranking them from the most preferable to the least preferable (expert 

judgement). This was applied by the pairwise comparison method through Analytic Hierarchy Process (AHP) (Saaty, 

1977; 1980; 1990; 2000; Saaty et al., 1991). Landslide Susceptibility Index (LSI) consisted, as mentioned before, of 

twelve independent variables, namely, the basin’s slope (in degrees) (S), the aspect-slope direction (A), the curvature 

(C), the elevation-topographic zones (E), the geology-lithology (G), the rainfall (R), the land use (LU), the distance to 

tectonics-faulting zones (T), the distance to drainage network (D), the distance to transportation (TR), the topographic 

wetness index (TWI) and the stream power index (SPI). The selection of these parameters was actually based on their 

relevance to landslide occurrences as reviewed in the scientific references (Bathrellos et al., 2009; Chalkias et al., 2014; 

Ferentinou et al., 2010; Kritikos et al., 2011; Mancini et al., 2010; Marinoni, 2004; Papadakis et al., 2017; Polykretis et 

al., 2014; Tsangaratos et al., 2013). Each parameter was spatially visualized in a thematic map after having been 

processed in a GIS environment using a weighted overlay analysis and was categorized into seven classes from “Very 

Low” to “Very High”. Following the methodology flowchart (Fig.2), the final LSI was determined using the following 

equation: 

 S    i  i

n

i  

 

where, 

Ri the ranking of each variable 

wi the variable’s weight assignement 

n the number of variables (12) 
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 Fig.2: Methodology flowchart. 
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This AHP method lets us detect the landslide susceptibility areas by identifying the most landslide significant criteria 

based on the decision makers’ preferences being capable of converting subjective assessments of relative importance 

into a weighted-linear scale transform. This approach was used for comparing each factor map and determining the 

factor weight values. Furthermore, the criterion pairwise comparison matrix (12×12) takes the pairwise comparisons as 

an input and produces the relative weighting factors allowing the comparison of two criteria at a time. The relative 

significance between the criteria is evaluated along the row from 1 to 9 indicating less important to much more 

important criteria, respectively whereas the reciprocal of the weight (from 1/2 to 1/9) is assigned to the corresponding 

column (Table 1). Each parameter was assigned a value in a scale between 1 and 10 (rating score) and ranked based on 

the expert’s consultation, knowledge, experience and subjectiveness. The more precise is the judgement the more 

compatible is the produced map with reality. All the variables are getting prepared separately and are finally assembled 

to produce the Landslide Susceptibility map. 

 
Table 1: Scale for comparison (by Saaty). 

Scale Deg.of preference Explanation 

1 Equal Two activities contribute equally 

3 Moderate Experience and judgment slightly to moderately favour one activity over another 

5 Strong Experience and judgment strongly or essentially favour one activity over another 

7 Very strong One activity is strongly favoured over another and its dominance is showed in practice 

9 Extreme Evidence of favouring one activity over another is of the highest degree possible of an affirmation 

2, 4, 6, 8 Intermediate values Used to represent compromises between the preferences in weights 1,3,5,7 and 9 

Reciprocals Opposites Used for inverse comparisons 

 

Moreover, the final weightings for the parameters are the normalized values of the eigenvectors that is associated with 

the maximum eigenvalues of the reciprocal matrix. The Consistency Ratio measures how far a matrix is away from 

consistency. A Consistency Ratio (CR) indicates the probability that the matrix ratings were randomly generated and 

when CR is less than or equal to the threshold 0.1 (Table 2) signifies an acceptable reciprocal matrix, while ratio over 

0.1 implies that the matrix should be revised indicating inconsistent judgements and is given by the equation: 

RI
CI=CR  

where, 

CI the Consistency Index given by the equation: 

1)-(n
n)-(λ

=CI max  

where, 

λmax the maximum eigenvalue (priority vector multiplied by each column total) 

n the number of variables involved and 

RI the Random Index (Table 1) for matrices which is based on the number of variables (n) 

 
Table 2: The values of the Random Index (RI) used to CR computation. 

Matrix order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Random Index (RI) 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.51 1.49 1.52 1.54 1.56 1.58 1.59 

 

3. Results and Discussion 

3.1 Variables Selection 

Slope (S) 

The landslides usually occur as the surface slope increases due to the instability of certain rock formations to remain at 

their positions. Steeper slopes are more susceptible to landslides since high slope gradients are prone to slope failures, 

while flat areas are not vulnerable to landslide occurrences. Geomorphologically, the slope varies with high slopes (30°-

55°) in the mountainous areas, moderate to steep slopes (10°-30°) in the hilly areas and gentle to moderate slope (0°-

10°) in the plain. The slope map (Fig.3) of the Atalanti basin was reclassified into seven (7) classes varing from 0–5 to 

>45%. 

 

Aspect (A) 

This parameter (Fig.3) has been derived from the digital terrain model, paying particular attention to those areas that are 

windy and receive the highest rainfall amount, in this case, SW, W, NW and N directions (regulates the exposure to 

weather conditions, such as duration of sun exposure, rainfall intensity, moisture conservation, etc.). The slope direction 

plays a decisive role in the type of vegetation that develops, since it is heavily influenced by the amount of received 

solar energy. Consequently, SW slope direction is this which is favored by solar radiation, in relation to the North 

direction, in the development of vegetation and cultivation. 

 

Curvature (C) 

It has been derived from the digital terrain model taking into consideration that, depending on the relief curvature, it is 

facilitated or made difficult by the landslides’ occurrences. The concave-negative values facilitate the occurrence of 
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landslides as opposed to convex (positive) ones (Fig.3). 

 

Elevation (E) 

Naturally, high elevation areas have been assigned the highest rating, as landslide prone areas (Fig.3). Within the study 

area, the mountainous areas account only for 2.2% (>800 m) of the total area mainly at the Southern end of the basin 

(Mt. Chlomo). The semi-mountainous topographical zone accounts for 4.5% (600-800 m) while the flat areas account 

for 39.5% (0-200 m) mostly concerning the coastal areas. Also, the hilly and semi-hilly areas occupy almost 54% (200-

600 m) of the basin. 

 

  

  
Fig.3: Thematic maps of basin’s slope, aspect, curvature and elevation with classification. 

 

Geology – Lithology (G) 

Given that different lithological units exhibit different slope stability behavior, lithology plays a very significant role in 

landslides susceptibility zonation, since they are closely related to the lithological composition and materials’ 

disintegration. The regional area is consisted of metamorhic-ultrabasic rocks of Paleozoic age such as shales and 

schists, of ophiolithic rocks (diabases, peridotites, serpentines) and flysch and of formations from Triassic to 

Creataceous age (e.g. dolomites and limestones) with large-scale faulting zones (WNW and NNE directions), fractures, 

fissures and cracks. Post-alpine mostly unconsolidated sediments such as sandstones, conglomerates, marls and alluvial 

deposits of Tertiary (Neogene-Pleiocene) and Quaternary age (Maratos et al., 1965) cover the Kalliaros plain. 

According to the geology-lithology, seven (7) classes were considered with flysch, schists and shales being attributed 

the lowest rate, marls the medium one and dolomites-limestones as well as the alluvial deposits with the lowest rate 

value because of their hardness the former and the low elevated occupied areas the latter (Fig.6). 

 

Rainfall (R) 

Heavy rainfalls are one of the main landslide-triggering factors. Both the rainfall intensity and precipitation itself in a 

given area, combined with other factors, affect the faster landslides occurrences. In the present essay, monthly 

precipitation data (Fig.4) of 51 years (1963-2014) from Atalanti rain gauge as well as mean annual precipitation data 

from 35 adjacent meteorological stations collected from the Hellenic National Meteorological Service (HNMS) and the 

Ministry of Environment and Energy were used to calculate the rainfall distribution and interpolated to create a 

continuous raster rainfall map within and around the study area (Fig.5). The values of this parameter were classified 

into seven classes between 450 mm and 1300 mm. As illustrated in Fig.6, the higher values were located in the hilly and 

mountainous parts of the study area whereas the lower ones in the flat relief (Kalliaros plain), as expected (Fig.6). 

 

Land Use (LU) 

Land use affects infiltration rate with forest and vegetated areas favoring infiltration, while urban, residential and 
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pasture areas aggregating the overland flow due to the impervious cover which reduces infiltration capacity and 

increases runoff showing high susceptibility to landslideing. According to Corine Land Cover European programme 

(2012) the study area is covered by 13 discrete land use categories the most important of which are those of 

sclerophyllous vegetation (29.7%), non-irrigated arable land (20.5%) and complex cultivation patterns (11.7%), a 

relatively small percent by transitional woodland – shrub (9.7%) and land principally occupied by agriculture with 

significant areas of natural vegetation (6.9%) and finally, areas with mixed forest (2.3%), natural grasslands (1.4%) and 

discontinuous urban fabric (1.2%). In the Land Use map (Fig.6), seven (7) classes were identified, namely, 

urban/residential areas, forests, olive groves and vineyards, croplands, sclerophyllous vegetation, non-arable land and 

transitional lands. In many cases, vegetation favors the slope stability, contributing to the drainage of part of the water 

through the root system of the trees and limiting the corrosive action of the surface water. However, there are cases 

where the presence of vegetation can have negative consequences. 

 

 
Fig.4: Mean monthly rainfall values in Atalanti meteorological station. The red dashed line shows the average precipitation value of 

the time series (1981-2014) and the green solid one the 12-month moving average. 

 

  
 

  
Fig.5: The over-annual precipitation for the entire time period (up-left), the rainfall seasonal distribution (up-right), the mean over-

annual precipitation of the stations in the regional area (down-left) and the rain gradient equation for the regional area according to 

linear regression analysis (down-right). 
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Distance to Tectonics (T) 

Whereas the study area is located in a tectonic active zone (Atalanti Fault Zone), the participation of the distance factor 

from the faults is considered necessary for further analysis. In order to investigate the landslides in relation to the 

distance from the tectonic elements, classe have been made per 100m equidistance (interval) with high distance from 

tectonics was ranked with the lowest rate value while this with low distance wase ranked with the highest rate value, as 

illustrated in Fig.6. 

 

  

  
Fig.6: Thematic maps of geology, rainfall, land use and distance to tectonics with classification. 
 

Distance to Drainage (D) 

River erosion and surface runoff are one of the most important triggering factors, especially in areas with intense 

geomorphological relief and dense drainage network with deep valleys. The distance from surface runoff is therefore an 

important factor in characterizing vulnerable areas. The distance from river network plays an important role in defining 

the landslide areas. The role of a river decreases as the distance from river banks increases. For the study area, it 

appears that areas near the river network (<50 m) are highly landslide susceptible, while the effect of this parameter 

significantly decreases with no landslide phenomena in distance >500 m. The most affected areas during landslides are 

those nearby the river channels. The drainage network was reclassified in seven classes and areas with high distance 

from drainage were ranked with the lowest rate value while those with low drainage distance were ranked with the 

highest rate value, as illustrated in Fig.7. 

 

Distance to Transportation (TR) 

Road data have been derived from topographical maps of scale 1:50,000 with 50m equidistance zones (intervals). The 

road network is the result of anthropogenic interference in nature, which could potentially contribute to the reduction of 

slope stability and consequently the occurrence of adverse effects due to inappropriate construction and/or lack of 

rainwater drainage network (Fig.7). 

 

Topographic Wetness Index (TWI) 

The Topographic Wetness Index (TWI) combines the upstream contributing area per unit and slope and is mostly used 

to quantify topographic control on hydrological processes and distribute the soil moisture in a given area (Fig.7). The 

TWI is given by the equation: 

               

where, 

a the upslope contributing area (flow accumulation raster map for the corresponding DEM) 

tanβ the slope angle (the slope raster map in degrees for the corresponding DEM) 
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High values represent drainage depressions (lowlands with low slope gradient) with wet ground while low ones 

represent crests and ridges (highlands with high slope gradient). The higher value of TWI the more susceptible areas to 

landslides. 

 

Stream Power Index (SPI) 

The Stream Power Index (SPI) is a measure of the erosive power of the water flowing at the surface. SPI is calculated 

based upon slope angle and upstream drainage area. SPI approximates locations where gullies might be more likely to 

form on the landscape. Stream Power Index (SPI) takes into consideration both a local slope geometry and site location 

combining data on slope gradient and basin area, as follows: 

               
where, 

a the upstream drainage area (flow accumulation raster map for the corresponding DEM) 

tanβ the slope angle (the slope raster map in degrees for the corresponding DEM) 

The higher value of SPI the more prone areas to landslides (Fig.7). 

 

  

  
Fig.7: Thematic maps of distance to drainage and transportation, topographic wetness and stream power indices with classification. 

 

3.2 Results’ Evaluation – Validation 

According to AHP method the rating score of each variable ranged from 1 to 10 indicating the classes from “Very  o ” 

to “Very High”. Then, each variable  as assigned to a unique  eight based on expert judgement, decision-maker’s 

preference and scientific references. The total weight was resulted by the sum up of the weight and ranking 

multiplication. After following the same procedure for all the aforementioned criteria, the gross weight of the total one 

is shown in Table 3. 

 
Table 3: Variables  eights’ assignment to landslide susceptibility based on AHP method. 
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(by Eigen) 

Geology – Lithology (G) 1 2 1/3 3 1/2 7 3 2 3 3 4 5 0.116 

Distance to Tectonics (T) 1/2 1 1/3 2 1/2 6 2 1 1 7 2 3 0.091 

Slope (S) 3 3 1 5 2 9 5 3 4 2 6 7 0.205 

Aspect (A) 1/3 1/2 1/5 1 1/5 6 1/2 1/4 1/5 3 1/3 1/4 0.039 
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Variables 
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(by Eigen) 

Rainfall (R) 2 2 1/2 5 1 7 4 3 2 4 6 8 0.163 

Elevation (E) 1/7 1/6 1/9 1/6 1/7 1 1/5 1/8 1/8 1/5 1/2 1/3 0.013 

Land use (LU) 1/3 1/2 1/5 2 1/4 5 1 1/3 1/3 1/2 1/4 1/4 0.034 

Distance to Transportation (TR) 1/2 1 1/3 4 1/3 8 3 1 1/2 1/4 1/2 1/3 0.059 

Distance to Drainage (D) 1/3 1 1/4 5 1/2 8 3 2 1 1/8 1/5 1/3 0.065 

Curvature (C) 1/3 1/7 1/2 1/3 1/4 5 2 4 8 1 2 3 0.088 

Topographic Wetness Index (TWI) 1/4 1/2 1/6 3 1/6 2 4 2 5 1/2 1 3 0.068 

Stream Power Index (SPI) 1/5 1/3 1/7 4 1/8 3 4 3 3 1/3 1/3 1 0.059 

Consistency Ratio CR = 0.067 

 

Validation – verification is a very important process for any model as it provides the ability to acquire knowledge about 

the predictive model values. All the citeria used quantitative (numeric) parameters except for the factors “aspect”, 

“geology” and “land use” (descriptive).  n the case of the non-numeric factors, classification depends mainly on the 

influence of the factor on the recharging landslide process (Table 4). These criteria all combined based on their 

proportions were resulted in the landslide susceptibility map shown in Fig.8. The basin’s slope and the rainfall were 

assigned with the highest weights follo ed by the “geology” and the “distance to tectonics”. On the contrary, the “land 

use”, the “elevation” as  e;; as the “aspect” were assigned with the lowest weights. As illustrated in Fig.8 the classes 

“Moderate to High”, “High” and “Very High” cover a surface of 17.4% or 43.3 km2 of the total basin. Also, according 

to the same map, the above categories of landslide susceptibility are mainly found in the central and southern parts of 

the study area (semi-mountainous, mountainous sections with steep slopes), as well as in the southeast (south of the 

settlements of Kyparissi and Tragana). On the contrary, the other classes cover mostly lower slope gradient areas 

(82.6% or 206.3 km2). Finally, as shown in Fig.8 the landslide areas based on historical records fall within the classes 

“High” and “Very High” validating the reliability of the applied methodology. Overlaying the map with the recordings 

of landslide events has shown that about 81.8% of those are found in zones of high and very high susceptibility classes. 

These results show a model with satisfactory precision within the work scale. 

In conclusion, the use of spatial analysis methods based on geoinformatics is a very effective tool of risk management 

of natural disasters on a regional scale. This methodology for mapping susceptibility to landslides included the creation 

of thematic layers, the development of an appropriate graphical, the numerical distribution, the integration of spatial 

data and finally, the enhancement of results in relation to the recorded landslides. The produced maps are intended to 

assist in decision-making and if areas of high susceptibility can not be avoided, all necessary precautions should be 

taken to minimize the likelihood of landslides. It is clearly obvious that the weighting of the different criteria 

significantly affects the results of the overall evaluation since the rating for each criterion may differ from scientist to 

scientist. To sum up, the landslide map produced is regarded as satisfactory and can be used for a first overview and 

approach to areas that require further study, control and monitoring. As the sensitivity of the proposed methodology is 

based on the choice of parameters that affect their landslide hazard and calibration, it is considered necessary to further 

study and combine other methodologies (graphical spatial analysis and statistics) to better simulate the landslide 

susceptibility of the area study. 

 
Table 4: Variables contributing to landslide susceptibility assessment. 

Variables/Criteria Range Classes Ranking-Ri Weight-wi 

Slope (degrees) (S) 

0.0-5.0 Very Low 1.0 

0.205 (20.5%) 

5.0-10.0 Low 2.5 

10.0-15.0 Low to Moderate 4.0 

15.0-20.0 Moderate 5.5 

20.0-30.0 Moderate to High 7.0 

30.0-45.0 High 8.5 

>45.0 Very High 10.0 

Aspect (A) 

Flat, East Very Low 1.0 

0.039 (3.9%) 

Northeast Low 2.5 

Southeast Low to Moderate 4.0 

North, South Moderate 5.5 

Southwest Moderate to High 7.0 

Northwest High 8.5 

West Very High 10.0 

Curvature (C) 

>1.5 Very Low 1.0 

0.088 (8.8%) 

0.0 Low 2.5 

0.5-1.5 Low to Moderate 4.0 

0.0-0.5 Moderate 5.5 

-0.5-0.0 Moderate to High 7.0 
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Variables/Criteria Range Classes Ranking-Ri Weight-wi 

(-1.5)-(-0.5) High 8.5 

<-1.5 Very High 10.0 

Elevation (m) (E) 

0.0-100.0 Very Low 1.0 

0.013 (1.3%) 

100.0-200.0 Low 2.5 

200.0-400.0 Low to Moderate 4.0 

400.0-600.0 Moderate 5.5 

600.0-800.0 Moderate to High 7.0 

800.0-1000.0 High 8.5 

>1000.0 Very High 10.0 

Geology – Lithology (G) 

Limestones-Dolom. Very Low 1.0 

0.116 (11.6%) 

Ophiolites-Tuffs Low 2.5 

Alluvial sediments Low to Moderate 4.0 

Neogene formations Moderate 5.5 

Debris-Conglom. Moderate to High 7.0 

Schists-Shales High 8.5 

Flysch Very High 10.0 

Rainfall (R) 

452.6-575.3 Very Low 1.0 

0.163 (16.3%) 

575.3-697.9 Low 2.5 

697.9-820.5 Low to Moderate 4.0 

820.5-943.1 Moderate 5.5 

943.1-1065.7 Moderate to High 7.0 

1065.7-1188.4 High 8.5 

1188.4-1311.0 Very High 10.0 

Land Use (LU) 

Urban / Residential Very Low 1.0 

0.034 (3.4%) 

Forest Low 2.5 

Transitional Woodland Low to Moderate 4.0 

Irrigated land Moderate 5.5 

Sclerofyllous Vegetation Moderate to High 7.0 

Olives / Vineyards High 8.5 

Pasture Very High 10.0 

Distance to Tectonics (m) 

(T) 

>600.0 Very Low 1.0 

0.091 (9.1%) 

500.0-600.0 Low 2.5 

400.0-500.0 Low to Moderate 4.0 

300.0-400.0 Moderate 5.5 

200.0-300.0 Moderate to High 7.0 

100.0-200.0 High 8.5 

<100.0 Very High 10.0 

Distance to Drainage (m) 

(D) 

>500.0 Very Low 1.0 

0.065 (6.5%) 

300.0-500.0 Low 2.5 

200.0-300.0 Low to Moderate 4.0 

150.0-200.0 Moderate 5.5 

100.0-150.0 Moderate to High 7.0 

50.0-100.0 High 8.5 

<50.0 Very High 10.0 

Distance to Transportation 

(m) (TR) 

>500.0 Very Low 1.0 

0.059 (5.9%) 

300.0-500.0 Low 2.5 

200.0-300.0 Low to Moderate 4.0 

150.0-200.0 Moderate 5.5 

100.0-150.0 Moderate to High 7.0 

50.0-100.0 High 8.5 

<50.0 Very High 10.0 

TWI 

0-5.0 Very Low 1.0 

0.068 (6.8%) 

5.0-6.8 Low 2.5 

6.8-8.0 Low to Moderate 4.0 

8.0-9.5 Moderate 5.5 

9.5-11.0 Moderate to High 7.0 

11.0-13.0 High 8.5 

13.0-20.0 Very High 10.0 

SPI 

1.6-8.1 Very Low 1.0 

0.059 (5.9%) 

8.1-10.2 Low 2.5 

10.2-12.0 Low to Moderate 4.0 

12.0-13.5 Moderate 5.5 

13.5-15.1 Moderate to High 7.0 

15.1-17.2 High 8.5 

>17.2 Very High 10.0 

Total - - - 1.0 (100.0%) 
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Fig.8: Landslide susceptibility map based on AHP method (left) and classes’ surface distribution percentage (right). 

 

3.3 Sensitivity Analysis 

One way of analyzing the sensitivity analysis of a model is by varying the weight factor of the strongest factor by a 

small percentage (+5%), with the simultaneous inverse differentiation of the second stronger factor (-5%), so that the 

final sum of the coefficients be the same as the original one. Thereafter, this process can be repeated for as many 

modification values as decided. The values to be calculated for each case of modifying the model are the deviations 

from the original and consequently useful conclusions can be drawn as to the sensitivity (or not) of the result to these 

minor changes. In the present study four sensitivity analysis scenarios were selected. In the first sensitivity scenario, the 

coefficient of the basin’s slope was increased by 0.05 and the coefficient of the second strongest variable, which is the 

rainfall, was decreased by 0.05 while the second scenario is the opposite. In the third scenario, the coefficient of the 

slope was increased again by 0.05 and the coefficient of the third most powerful factor, geology - lithology, was 

reduced by 0.05 while the fourth scenario is the opposite. The weighting ratios of the remaining variables for each 

sensitivity scenario remained unchanged. 

In the table 5 and as illustrated in Fig.9, the quantitative comparison of the sensitivity analysis scenarios with the initial 

result of the model is presented. The values refer to the percentage (%) distribution and the percentage difference of the 

areas corresponding to each class relative to the original model. In the sensitivity analysis scenarios of the model, the 

deviations that appear were small and therefore the model is considered stable. In conclusion, multicriteria analysis 

using Analytical Hierarchy Process is a useful research tool in spatial decision making models. The AHP technique has 

a wide range of applications with very satisfactory results and is a structured, documented, self-controlled and relatively 

easy to apply technique. Finally, the ability of the method to combine quantitative and qualitative criteria with spatial 

differentiation makes it suitable for the analysis of complex geographic phenomena and problems, while its application 

to GIS environment in multi-criteria analysis with weighted cartographic overlay makes it a powerful analytical tool. 

 
Table 5: Areal distribution percentage (%) in each class and difference between the applied model and each hypothetic scenario. 

Classes Model Scen-1 Differ-1 Scen-2 Differ-2 Scen-3 Differ-3 Scen-4 Differ-4 

Very Low 2.5 1.7 -0.8 2.7 0.2 2.3 -0.2 2.8 0.3 

Low 19.7 19.1 -0.6 20.2 0.5 19.1 -0.6 20.4 0.7 

Low to Moderate 30.0 29.2 -0.8 30.8 0.8 29.0 -1.0 30.2 0.2 

Moderate 30.4 30.6 0.2 29.2 -1.2 30.5 0.1 30.3 -0.1 

Moderate to High 14.3 14.8 0.5 13.8 -0.5 14.8 0.5 13.5 -0.8 

High 3.0 3.5 0.5 3.1 0.1 3.7 0.7 2.6 -0.4 

Very High 0.1 1.1 1.0 0.2 0.1 0.6 0.5 0.2 0.1 
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Fig.9: Graphical presentation for the surface distribution percentage (left) and the difference between the applied model and each 

hypothetic scenario (right). 
 

4. Conclusions 

This paper presented an approach to implement a semi-quantitative analysis of spatio-temporal landslide occurrences in 

the Atalanti area in central Greece. Based on landslide causative factors and a slope failure inventory, a susceptibility 

map was calculated by a GIS-based AHP method which ranked areas according to their probability to produce slope 

failures. In this research twelve factors were investigated to map the landslide susceptibility. Of those, four factors 

including slope, rainfall, geology and distance to tectonics were considered to be the main causative-triggering 

landsides factors. Based on the results, a large area in the district consisted of moderate and low to moderate landslides 

prone susceptibility categories. It was concluded that AHP model pointed out the interrelation between the occurrence 

of landslides and theirs causative-instability factors. Hence, it may be inferred that the map correlated satisfactorily with 

existing field conditions. As the final conclusion, the results in this study demonstrated that the proposed integration 

approach could be used for preliminary landslide studies, hazard mapping and other geo-environmental problems as it is 

capable of producing accurate assessments of landslide susceptibility that are useful for hazard prevention management 

and decision making. As the main outcome of this work, a landslide susceptibility map was finally produced and 

validated. Up to 3% of the whole watershed  as assigned to the “high” and “Very High” susceptibility classes, 

revealing the geographical distribution of the areas most prone to landslide occurrences. A Weighted Linear 

combination method to determine the landslide susceptible zones was applied. The comparison of the landslide hazard 

map with the actual landslide activity distribution map has shown that almost 82% of the landslides lie within the 

maximum hazard zone. Finally, use of GIS was found immensely important for thematic data layer generation and for 

their spatial data analysis, which involved complex operations maximizing the functionality of GIS environment and 

producing quite accurate landslide susceptibility map. 
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