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Abstract — In this paper, we solve numerically second order linear boundary value problems by the technique of 

Hermite Polynomial methods. For this, we derive a simple and efficient matrix formulation using Hermite polynomials. 

The proposed method is tested on several numerical examples of second order linear boundary value problems with 

Neumann and Cauchy types boundary conditions. The approximate solutions of some examples coincide with the exact 

solutions on using a very few Hermite polynomials. The approximate results, obtained by the propose method, confirm 

the convergence of numerical solutions and are compared with the existing methods available in the literature. 
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I.INTRODUCTION 

 

In science and engineering, there are many linear and nonlinear problems of second order differential equations with 

various types of boundary conditions, are solved either analytically or numerically. Numerical simulation in engineering 

science and in applied mathematics has become a powerful tool to study the physical phenomena, particularly when 

analytical solutions are not available. For example the diffusion occurring in the presence of exothermic chemical reaction, 

heat conductions associated with radiation effect [6]. Solving such type of boundary value problems analytically is 

possible only in very rare cases. Study in this field is very interesting. Various methods are available in the literature 

concerning their numerical solutions [11-12]. Khan [11] obtained a parametric cubic spline solution of two point boundary 

value problems, Feng and Li [14] solved a  second-order Neumann boundary value problem with singular nonlinearity for 

exact three positive solutions, Lima and Carpentier [10] obtained a Numerical solution of a singular boundary-value 

problem in non-Newtonian fluid mechanics, Rashidinia and Jalilian[8] introduced a spline solution of two point boundary 

value problems, Viswanadham et al.[7] obtained a numerical solution of a fourth order boundary value problems by 

Galerkin method with Quintic B-splines basis, Das et  al.[13] produced a method for solutions of nonlinear second order 

multi-point boundary value problems and recently Bhatti and Bracken[8] solved linear and non-linear differential equation 

numerically by Galerkin method with Bernstein polynomials basis. 

 

However, in this paper a very simple and efficient matrix is obtained by using Hermite polynomials. The formulation is 

derived to solve second order boundary value problem with two different cases of boundary condit ions, in details, in 

Section 3. In Section 2, we give a short introduction of Hermite polynomials. Finally, one example of Neumann 

boundary value problems and two examples of Cauchy boundary value problems are given to verify the proposed. 

formulation. The results of each example indicate the convergence numerical solutions. Moreover, this method can 

provide the exact solutions, even with a few lower order Hermite polynomials, if the equation is simple. 

 

II.HERMITE POLYNOMIALS 
 

The general form of the Hermite polynomials of n
th 

degree is defined by 

     2/2/ 22

1 x

n

n
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n e
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d
exH                  where n = 0, 1, 2, 3…….                                                   (2.1) 

The Hermite Polynomials up to tenth degree are as follows: 
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Now, the Hermite Polynomials which are orthogonal in [- , ] with respect to the weight function 

w(t) can be determined with the aid of the following recurrence formula 
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These functions are orthogonal in sub-interval [a, b] with the aid of the following linear transformation 
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We have  
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These are named shifted Hermite Polynomials in the interval [0,t],[0, ft ]  

 

III. FORMULATION OF MATRIX FORM 

 

Let us consider  

            btatrtytqtytpty  ,'"
 , where   1kay  ,   2kby                                       (3.1)                                                                                                                                                                                       

Where  are continuous functions of t on  1k and  2k are known constants. 
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be an approximate solution of the given BVP (3.1)  where M is the total numbers of subinterval of [a,b]. 
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Let btttta m  ....210  be the grid points then at  Mjtt i ,.....3,12  the equation (3.3) becomes 
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Now for M=5 from the above equation (3.4) for j = 0, 1… 5 and conditions from equation (3.1) we get following matrix 

system. 

We have  
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Solution of above system gives the unknowns Cj, j = 0, 1, …., M+2 which are used in equation (3.2) to get approximate 

solution of the BVP (3.1). 

 

3.1. Numerical examples 

 

In this section, we consider two examples of Cauchy boundary value problem and one example of Neumann boundary 

value problem which are available in the literature. For each example we find the approximate solution using same 

number of piecewise Hermite polynomials. 

 
3.1.1. Cauchy boundary value problem 

 

Consider the following BVP  

    5,32,00,3" 2  yyxyy ; [3]                                                                                                                 (3.1.1.1) 

We apply the above method with M = 4 and n = 6 and using the linear transformation (2.2) for converting equation 

(3.1.1.1) to [0, 1] and we get the approximate solution which is compare with the exact solution given by the following 

table. 

 

Table 3.1.1.1 . Comparison of y (t) with exact solution. 

 

 
Exact Solution 

Approximate Solution by Present 

Method 

0.00 t  0.00 0.0000 

5.01 t  0.20 0.1990 

0.12 t  0.24 0.2390 

5.1
3
t  1.17 1.1709 

0.24 t  3.50 3.4999 

 

3.1.2.  .  Cauchy boundary value problem 

 

Consider the following BVP  

    2002,00,0"  yyyy  
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Using the above method with M = 4 and n = 6, we get the approximate solutions which are compared with the exact 

solutions  as in table. 

 

Table 3.1.2.1. Comparison of y (t) with exact solution. 

 

 
Exact Solution 

Approximate Solution by Present 

Method 

0.00 t  0.0000 0.0000 

5.01 t  28.7353 28.7364 

0.12 t  64.8054 64.8053 

5.13 t  117.4171 117.4157 

0.24 t  200.0000 199.9999 

 

 

3.1.3. Neumann boundary value problem 

 

Consider the following BVP  

 
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with M = 5 and  n =7 and we obtain the approximate solution of the problem as shown in the table. 

 

Table 3.1.3.1. Comparison of u (t) with exact solution. 

 

 Exact Solution Approximate Solution by HPM 

0.2 0.08860 0.08863 

0.4 0.13380 0.13567 

0.6 0.13380 0.13380 

0.8 0.08860 0.08839 

1.0 0.00000 0.00006 

 

 

IV. CONCLUSION 

 

In this paper, we have developed Hermite Polynomial method to approximate the solution of second order boundary 

value problems with Neumann and Cauchy boundary conditions. It is observed that the approximate results converge 

monotonically to the exact solutions. We may realize that this method may be applied to solve other higher order linear 

boundary value problems for the desired accuracy. The objective of this paper is to present a simple and accurate method 

to solve second order boundary value problems 
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