

Scientific Journal of Impact Factor (SJIF): 4.72

e-ISSN (O): 2348-4470 p-ISSN (P): 2348-6406

International Journal of Advance Engineering and Research Development

Volume 4, Issue 4, April -2017

α - graceful labeling and its application to produce graceful related families

V. J. Kaneria¹, Kalpesh M. Patadiya²

¹(Department of Mathematics, Saurashtra University, Rajkot, India) ²(School of Engineering, RK University, Rajkot, India)

Abstract:

In this paper we focused to produce graceful labeling, odd graceful labeling, k - graceful labeling for the graph $G_1 \cup G_2$, among G_1 is α - graceful graph and G_2 has one of above three labeling.

Keywords:

Graceful labeling, α - graceful graph, odd graceful labeling, k - graceful labeling. AMS Subject Classification number: 05C78.

1 Introduction

In 1966 Rosa[1] defined a function f is a graceful labeling of a graph G, if $f: V(G) \rightarrow \{0, 1, ..., |E(G)|\}$ is injective and its edge induced function $f^*: E(G) \rightarrow \{1, 2, ..., |E(G)|\}$ defines as $f^*(e) = |f(u) - f(v)|$ is bijective, for every edge $e = (u, v) \in E(G)$. A graph G is called graceful graph, if it admits a graceful labeling. He also defined α labeling as a graceful labeling with an additional property that \exists a non - negative integer $k(0 \le k < |E(G)|) \ni$ for every edge $e = (u, v) \in E(G)$, either $f(x) \le k < f(y)$ or $f(y) \le k < f(x)$. A graph which admits an α - labeling is must be a bipartite graph and we call here an α - graceful graph.

A function f is called a (k,d) - graceful labeling of a graph G, if $f:V(G) \rightarrow \{0,1, ..., k + (q-1)d\}$ is injective and its edge induced function f^* on E(G), gives edge label absolute difference of its end vertices under f and it produces precisely k, k+d, k+2d,..., k+(q-1)d edge labels, where q = |E(G)| such graph G is called a (k,d) - graceful graph. (k,1) graceful graph is known as k - graceful graph and (1,2) - graceful graph is known as odd graceful graph. It is obvious that (1,1) - graceful or 1 - graceful labeling is precisely graceful labeling for a graph G.

In [3,4] Kaneria and Jariya defined a semi smooth graceful labeling for a bipartite graph G, it is an injective map $f: V(G) \rightarrow \{0, 1, ..., t - 1, t + l, t + l + 1, ..., q + l\}$ and its edge induced function $f^*: E(G) \rightarrow \{1 + l, 2 + l, ..., q + l\}$ defined as $f^*(e) = |f(u) - f(v)|$ is bijective, for each edge $e = (u,v) \in E(G)$, for any non - negative integer l. Kaneria, Meera Meghpara and Maulik Khoda[5] proved that semi smooth graceful labeling for a graph G is equivalent to an α - graceful labeling for the graph G.

Here we considered G = (V,E), a simple, finite and undirected graph with p vertices and q edges. We follow Harary[2] for the basic notation and terminology of graph theory.

2 Main Results

Theorem - 2.1

Let G_1 be an α - graceful graph with an α - labeling $f: V(G_1) \rightarrow \{0, 1, ..., q_1\}$, where $q_1 = |E(G_1)|$ and a non negative integer $k (0 \le k < q_1)$, for each $e = (x, y) \in E(G_1)$, it satisfies min $\{f(x), f(y)\} \le k < \max\{f(x), f(y)\}$. Let G_2 be an graceful graph with a graceful labeling $g: V(G_2) \rightarrow \{0, 1, ..., q_2\}$, where $q_2 = |E(G_2)|$ and $|f(V(G_1)) \cap \{k - 1, k + 2\}| \le 1, |g(V(G_2)) \cap \{1, q_2 - 1\}| \le 1$. Then $G_1 \cup G_2$ is a graceful graph.

Proof: Let $V_1 = \{v \in V(G_1)/f(v) \le k\}$ and $V_2 = V(G_1) - V_1$. Since, $q_2 - g$ is a graceful labeling for G_2

and $|g(V(G_2)) \cap \{1, q_2 - 1\}| \le 1$, without loss of generality we assume that $q_2 - 1 \notin g(V(G_2))$.

To define $h: V(G_1 \cup G_2) \rightarrow \{0, 1, \dots, q_1 + q_2\}$, we need following two cases.

Case - I: $k + 2 \notin f(V(G_1))$. By property of f and $k, k + 2 \notin f(V_2)$.

Define $h/V_1 = f/V_1$, $h/V_2 = f/V_2 + q_2$ and $h/v(G_2) = g/V(G_2) + k + 2$. It is obvious that $h(V_1) \subseteq \{1, 2, ..., k\}, h(V(G_2)) \subseteq \{k + 2, k + 3, ..., q_2 + k, q_2 + k + 2\}$, as $q_2 - 1 \notin g(V(G_2))$.

Thus, above defined labeling pattern give rise h is an injective map in this case, as f and g both are injective maps.

Case - II : $k - 1 \notin f(V(G_1))$ By property of f and $k, k - 1 \notin f(V_1)$.

Define $h/V_1 = f/V_1$, $h/V_2 = f/V_2 + q_2$ and $h/V(G_2) = q_2 - g/V(G_2) + k - 1$. It is obvious that $h(V_1) \subseteq \{1, 2, ..., k - 2, k\}$, as $k - 1 \notin f(V_1)$, $h(V(G_2)) \subseteq \{k - 1, k + 1, k + 2, k + 3, ..., q_2 + k - 1\}$, as $q_2 - 1 \notin g(V(G_2))$ and $h(V_2) \subseteq \{q_2 + k + 1, q_2 + k + 2, ..., q_1 + q_2\}$.

Thus, above defined labeling pattern give rise h is an injective map in this case, as f and g both are injective maps.

By construction of $h, h^*/E(G_1) = q_2 + f^*/E(G_1)$ and $h^*/E(G_2) = g^*/E(G_2)$. Therefore, h^* is a bijection on $G_1 \cup G_2$ and so, h is a graceful labeling for $G_1 \cup G_2$. Thus, $G_1 \cup G_2$ is graceful graph. **Illustration - 2.2** $K_{3,4} \cup (P_3 \times P_3)$ and its graceful labeling, $K_{3,4}$ and its α - graceful labeling, $(P_3 \times P_3)$ and its graceful labeling are shown in Figure 1.

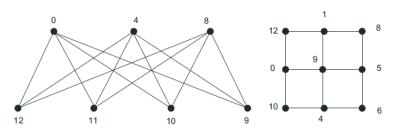


Figure 1: $K_{3,4}$ and its α - graceful labeling[Here k = 8], ($P_3 \times P_3$) and its graceful labeling. Here $7 \notin f(V(G_1))$ and $11 \notin g(V(G_2))$.

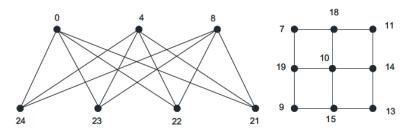


Figure 2: $K_{3,4} \cup (P_3 \times P_3)$ and its graceful labeling.

Theorem - 2.3

Let G_1 be an α - graceful graph and G_2 be an odd graceful graph, then $G_1 \cup G_2$ is also an odd graceful graph. **Proof:** Let G_1 be an α - graceful graph with a labeling $f: V(G_1) \rightarrow \{0, 1, ..., q_1\}$, where $q_1 = |E(G_1)|$ and a non - negative integer $k(0 \le k \le q_1)$, for each $e = (x, y) \in E(G_1)$, it satisfies the condition $min\{f(x), f(y)\} \le k < max\{f(x), f(y)\}$. Take $V_1 = \{v \in V(G_1)/f(v) \le k\}$ and $V_2 = V(G_1) - V_1$. Let $g: V(G_2) \rightarrow \{0, 1, ..., 2 \cdot q_2 - 1\}$ be an odd graceful labeling for G_2 , where $q_2 = |E(G_2)|$.

Define $h: V(G_1 \cup G_2) \rightarrow \{0, 1, \dots, 2(q_1 + q_2) - 1\}$ as follows.

 $h/V_1 = 2(f/V_1), h/V_2 = 2(f/V_2) + 2q_2 - 1$ and $h/V(G_2) = g/V(G_2) + 2k + 1$. It is obvious that $h(V_1) \subseteq \{1, 2, ..., 2k\}, h(V(G_2)) \subseteq \{2k + 1, 2k + 2, ..., 2(q_2 + k)\}$ and $h(V_2) \subseteq \{2(q_2 + k) + 1, 2(q_2 + k) + 2, ..., 2(q_1 + q_2) - 1\}$. Thus, above defined labeling pattern give rise h is an injective map, as f and g both are injective maps.

By construction of h, $h^*/E(G_1) = 2f^*/E(G_1) = 2f^*/E(G_1) + 2q_2 - 1$ and $h^*/E(G_2) = g^*/E(G_2)$. Therefore, $h^*: E(G_1 \cup G_2) \rightarrow \{1, 3, \dots, 2(q_1 + q_2) - 1\}$ is a bijection and so, $G_1 \cup G_2$ is an odd graceful graph. **Illustration - 2.4**

 $(P_3 \times P_4 \cup C_6)$ and its odd graceful labeling, $(P_3 \times P_4)$ and its α - labeling, C_6 and its odd graceful labeling are shown in the Figure 4,3.

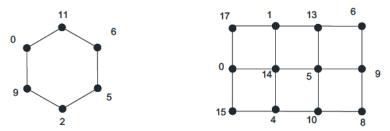
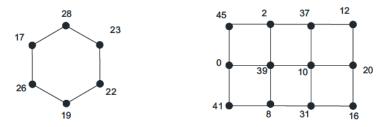


Figure 3: C_6 and its odd graceful labeling, $P_3 \times P_4$ and its α - labeling [Here k = 8].



Theorem - 2.5

Figure 4: $(P_3 \times P_4 \cup C_6)$ and its odd graceful labeling.

@IJAERD-2017, All rights Reserved

International Journal of Advance Engineering and Research Development (IJAERD) Volume 4, Issue 4, April-2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

Let G_1 be an α - graceful graph with an α - labeling $f: V(G_1) \rightarrow \{0, 1, \dots, q_1\}$, where $q_1 = |E(G_1)|$ and a non - negative integer $t(0 \le t < q_1)$, for each $e = (x, y) \in E(G_1)$, satisfies $min\{f(x), f(y)\} \le t < max\{f(x), f(y)\}$. If G_2 is a k - graceful graph with a k - graceful labeling $g: V(G_2) \rightarrow \{0, 1, \dots, q_2 + k - 1\}, q_2 = |E(G_2)|, k + q_2 - 2 \notin g(V(G_2))$ and $t + 2 \notin f(V(G_1))$, then $G_1 \cup G_2$ is a k - graceful graph.

Proof: Let $V_1 = \{u \in V(G_1)/f(u) \le t\}$ and $V(G_2) = V(G_1) - V_1$.

Take $V_3 = \{w \in V(G_2)/g(w) < k\}$ and $V_4 = V(G_2) - V_3$.

Define $h: V(G_1 \cup G_2) \to \{0, 1, ..., q_1 + q_2 + k - 1\}$ as follows.

 $h/V_1 = f/V_1, h/V_2 = f/V_2 + q_2 + k - 1$ and $h/V(G_2) = g/V(G_2) + t + 2$. By property of f and $t, t + 2 \notin f(V_2)$. It is observed that $h(V_1) \subseteq \{0, 1, ..., t\}, h(V(G_2)) \subseteq \{t + 2, t + 3, ..., t + k + q_2 - 1, t + k + q_2 + 1\}$ as $k + q_2 - 2 \notin g(V(G_2))$ and $h(V_2) \subseteq \{k + t + q_2, k + t + q_2 + 2, ..., k + q_1 + q_2 - 1\}$, as $t + 2 \notin f(V_2)$. Thus, above labeling pattern give rise h is an injective map, as f and g both are injective maps. By construction of $h, h^*/E(G_2) = g^*/E(G_2)$ and $h^*/E(G_1) = f^*/E(G_1) + k + q_1 + q_2 - 1$. Therefore, h^* is a bijection on $G_1 \cup G_2$ and so, h is k - graceful labeling for $G_1 \cup G_2$. Hence, it is a k - graceful graph.

Illustration - 2.6

 $G_1 = P_4 \times P_3$, $G_2 = K_{2,3} \cup P_5$. $G_1 \cup G_2$ and its k - graceful labeling, G_1 and its α - labeling, G_2 and its k - graceful labeling are show in Figure 6.5.

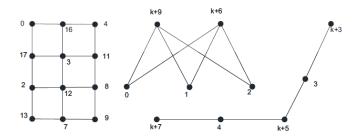


Figure 5: $P_4 \times P_3$ and its α - labeling[here t = 8], $K_{2,3} \cup P_5$ and its k - graceful labeling. where $t + 2 \notin f(V(P_4 \times P_3))$ and

 $k + q_2 - 2 = k + 8 \notin f(V(G_2))$

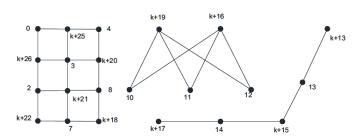


Figure $6: P_4 \times P_3 \cup (K_{2,3} \cup P_5)$ and its k - graceful labeling.

References:

- [1] A. Rosa, On certain valuations of the vertices of a graph, *Theory of Graphs (Internat. Symposium, Rome, July 1966)*, Gordon and Breach, N. Y. and Dunod Paris (1967) pp. 349-355.
- [2] F. Harary, Graph Theory, Addition Wesley, Massachusetts, (1972).

International Journal of Advance Engineering and Research Development (IJAERD) Volume 4, Issue 4, April-2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

- [3] V. J. Kaneria and M. M. Jariya, Smooth graceful graphs and its application to construct graceful Graphs, *I.J. of Sci. and Research*, 3(8)(2014), 909-912.
 [http://www.ijsr.net/archive/v3i8/MDIwMTU0ODg=.pdf]
- [4] V. J. Kaneria and M. M. Jariya, Semi smooth graceful graph and construction of new graceful trees, *Elixir Appl. Math.*, 76(2014) pp.28,536-28,538.
- [5] V.J. Kaneria, Meera Meghpara, and Maulik Khoda, Semi smooth graceful labeling and its application to produce α -labeling, *J. of Graph Labeling*, 2(2), (2016) pp. 153 160.
- [6] Gallian J.A., A dynamic Survey of graph labeling, *The electronics J. Combin.*,17, # DS6,(2014).