

International Journal of Advance Engineering and Research Development

e-ISSN (O): 2348-4470

p-ISSN (P): 2348-6406

Volume 3, Issue 12, December -2016

Two Level QR Code for Private Message Sharing And Document Authentication

Vrushali Bhapkar¹, Aishwarya Chavan², Seemali Bichkule³, Komal⁴

Department of Computer Engineering, Someshwar Engineering College, Baramati, Pune.

Abstract — The QR Stuff QR Code Generator permits you to make either dynamic or static QR codes and download them for quick utilize. QR codes are the best approach to make a connection between this present reality items (labeled with the QR code) and the Internet. Portable, any where, at anytime. Since QR codes make it so natural to exchange a web connection to a cell phone, they give an altogether bring down obstruction to visit. Data and fast perusing applications. In this paper, we display another rich QR code, that has two stockpiling levels and can be utilized for record confirmation. This earlier QR code, named as two level QR code (2LQR), can open and private stockpiling levels. People in general level is the same as the standard QR code stockpiling level, in this way it is comprehensible by any established QR code application. The private level is built by supplanting the dark modules by particular finished examples. It comprises of data encoded utilizing question code with a mistake adjustment limit.

Keywords- QR code, Document Authentication, Pattern Recognition, Content Authentication

I. INTRODUCTION

More research that spotlights on the utilization of QR Codes in a classroom is helpful future educator specialists and researchers alike in light of the fact that it can give a window into a world that has boundless potential. The innovation is a standout amongst the most-utilized sorts of two-dimensional standardized tag. QR Code assume a part in security frameworks where they're utilized to guarantee that transmitted messages have not been altered. The sender produces a hash of the QR code then, encodes message, and sends it with the message itself. The beneficiary then unscrambles both the message and the hash, delivers another hash from the got message, and thinks about the two hash values.

II. OVERVIEW OF SYSTEM

QR codes have an immense number of utilizations including: data stockpiling (promoting, historical center craftsmanship portrayal), redirection to sites, track and follow (for transportation tickets or brands), recognizable proof (flight traveler data, general store items) and so forth. The ubiquity of these codes is for the most part because of the accompanying elements: they are strong to the duplicating procedure, simple to peruse by any gadget and any client, they have a high encoding limit upgraded by mistake amendment offices, they have a little size and are vigorous to geometrical bends. In any case, those certain points of interest additionally have their partners:

- 1) Information encoded in a QR code is constantly open to everybody, regardless of the possibility that it is figured and along these lines is just readable to approved clients (the contrast amongst "see" and "get it").
- 2) It is difficult to recognize an initially printed QR code from its duplicate because of their inhumanity to the Print and Scan (P&S) handle.

III. LITERATURE SURVEY

1. Robust picture hashing

Author: R. Venkatesan, S.- M. Koon, M. H. Jakubowski, and P. Moulin

Portrayal: In [1], creator presents a novel count that uses a wavelet representation of pictures and new randomized get ready frameworks for hashing. They presented a photo hashing computation that progressions over pictures into short, generous piece strings. Using this figuring, can consider two pictures by checking no great strings for clear correspondence, rather than trying the substantially more included issue of taking a gander at "fluffy" picture data. Picture hashes were effective to various ambushes, including both normal picture planning and malignant twistings. The hashing figuring joins diverse musings from the fields of slip-up changing codes, and cryptography.

2. Wave Atom-Based QR Image Hashing Against Content-Preserving and Content-Altering Attacks

Author: Fang Liu(&) and Lee-Ming Cheng

In [2], Author have proposed a hashing arrangement in light of wave molecule change and randomized pixel change, which is fitting for picture content approval, picture database recuperation. The proposed computation can check the photos which have encountered essential substance secured picture get ready operations, for instance, weight, filtering, uproar development besides the geometric control. It is at the same time sensitive to poisonous upsetting the affirmation of system security. Instead of using routine change like DWT, DCT or other change, They have propose to use wave atom change for the sparser improvement and better qualities to think creation highlights when differentiated and others.

3. Geometric contortion strong picture hashing plan and its applications on duplicate location and verification

Author: Chun-Shien Lu • Chao-Yong Hsu

In [3], The real impediment of the current media hashing innovations is their constrained imperviousness to geometric assaults. Creators have proposed a novel geometric mutilation invariant picture hashing arrangement, which can be used to perform copy area and substance confirmation of cutting edge pictures. a circumstance of copy ID and taking after is given to plan how a photo hashing system can be used to regulate modernized picture substance. Given a photo controlled by its creator, a photo copy revelation sys-tem prerequisites to find out whether illegal copies of the photo exist on the Internet and, if they exist, give back a summary of suspect URLs. This substance looking for approach can be capable by technique for picture hashing, and the yield of the hashing structure can offer proprietors information about unapproved usage of their significant media data. The hash database used for addressing and looking for can be understood a detached from the net way. As needs be, time is basically spent on cross area based hash period of a moving toward request picture. In any case, Their arrangement compensates for this cost by offering power against geometric twisting. A speedy organizing system has moreover been proposed to quicken looking for in a broad picture database.

4. A Model-based Image Steganography Method Using Watson's Visual Model

Author: Mohammad Fakhredanesh, Reza Safabakhsh, and Mohammad Rahmati

In [4], Author proposes to utilize Watson's visual model to improve perceptual impalpability of model-based steganography. The proposed system checks ostensibly perceivable changes in the midst of embedding. To begin with, the best satisfactory change in each discrete cosine change coefficient is removed in perspective of Watson's visual model. By then a model is fitted to a low exactness histogram of such coefficients and the message bits are encoded to this model. Finally, the encoded message bits are embedded in those coefficients whose most noteworthy possible changes are ostensibly imperceptible. Exploratory outcomes show that movements coming to fruition due to the proposed system are perceptually indistinct, however show based steganography holds perceptually discernable changes. Their Experimental outcomes show that the proposed methodology does not hold any recognizable change in the photo while the model-based strategy holds various noticeable changes in the stego pictures.

5. Image Authentication by Content Preserving Robust Image Hashing Using Local and Global Features

Author: Lima S Sebastiana, Abraham Varghese, Manesh T

In [5], Author proposes a picture hash which is made from Haralick and MOD-LBP highlights close by luminance and chrominance, which are prepared from Zernike minutes. Sender makes the hash from picture highlights and attaches it with the photo to be sent. The hash is poor down at the gatherer to take a gander at the validity of the photo. The system recognizes picture imposter and finds the fabricated zones of the photo. The proposed hash is solid to essential substance securing changes and delicate to poisonous controls. The proposed hash is proper to picture approval.

IV. PROPOSED SYSTEM

In general, a 2LQR Code system consists of four stages: image pre-processing and, feature extraction, encryption. The general framework is shown in Fig. 1. The purpose of image pre-processing is to eliminate irrelevant information, recover useful information and enhance image features that are important in subsequent processing. To ensure robustness and sensibility, the selection and extraction of features are very important. Moreover, to reduce hash length and improve convenience for storage and hardware implementation, post-processing such as compression and coding is necessary. Encryption and randomization are used to reduce hash collisions to improve the security of the algorithm. The proposed system flow is given as below:

User: User can uploads Image files on server and can request for image file on server. For that user have to go through authentication process.

Admin: Admin can access all the image files on server. Divide it into parts and generate the hash value of each part.

Hacker: Hacker stoles image file and make changes in image vulnerable it and restore that at its place.

Authentication: At authentication the requested image can divided in parts and generate its hash values. Then it matches with the image on the server which already have its calculated hash values. Matching of both images is done. At the time of matching image we match the hash values for detecting the originality and vulnerability of image.

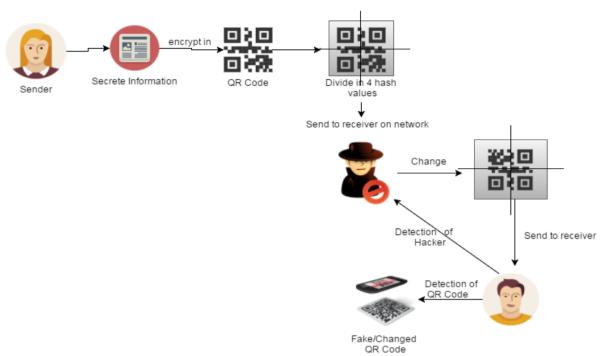


Fig 1. System Architecture

v. ALGORITHM

Our system can be represented as a set

 $X = \{I, O, S_C, F_C, C\}$

Where,

I=set of inputs

O=set of outputs

 S_C = set of outputs in success cases

 F_C = set of outputs in failure cases

C = set of constraints

 $I = \{U_D, I_S\}$

Where,

 U_D = Set of user details

 $I_S = Set of Images.$

 $O = \{I_S, S_M, F_M\}$

Where,

 I_A = set of Images

 $S_M = Success messages.$

 F_M = Failure message.

 $S_C = \{ I_{Un} \}$

Where

I_{Un} = valid set of images uploaded

 $F_C = \{I_{Un}, NULL\}$

Where,

I_{Uo} = invalid set of images uploaded

NULL represents no output

 $C = \{C_1\}$ Where,

 C_1 = "System only accepts images of file types such as bmp, jpeg, png"

 I_U , I_{Uo} , I_{Un} are in the form $I = \{I_1, I_2 ... I_n\}$ where, $I_1, I_2 ... I_n$ are images.

VI. CONCLUSION

The private level is made by supplanting dark modules with particular finished examples. These finished examples are considered as dark modules by standard QR code per user. In this way the private level is imperceptible to standard QR code per users. What's more, the private level does not influence in at any rate the perusing procedure of the general population level.

ACKNOWLEDGMENT

We might want to thank the analysts and also distributers for making their assets accessible. We additionally appreciative to commentator for their significant recommendations furthermore thank the college powers for giving the obliged base and backing.

REFRENCES

- [1] ISO/IEC 15420:2009. Information technology Automatic identification and data capture techniques EAN/UPC bar code symbology
- [2] ISO/IEC 16022:2006. Information technology Automatic identification and data capture techniques Data Matrix bar code symbology specification. 2006.
- [3] ISO/IEC 18004:2000. Information technology Automatic identification and data capture techniques Bar code symbology QR Code. 2000.
- [4] Z. Baharav and R. Kakarala. Visually significant QR codes: Image blending and statistical analysis. In Multimedia and Expo (ICME), 2013 IEEE International Conference on, pages 1–6. IEEE, 2013.
- [5] C. Baras and F. Cayre. 2D bar-codes for authentication: A security approach. In Signal Processing Conference (EUSIPCO), Proceedings of the 20th European, pages 1760–1766, 2012.
- [6] T. V. Bui, N. K. Vu, T. T.P. Nguyen, I. Echizen, and T. D. Nguyen. Robust message hiding for QR code. In Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2014 Tenth International Conference on, pages 520–523. IEEE, 2014.
- [7] A. T. P. Ho, B. A. M. Hoang, W. Sawaya, and P. Bas. Document authentication using graphical codes: Reliable performance analysis and channel optimization. EURASIP Journal on Information Security, 2014(1):9, 2014.
- [8] T. Langlotz and O. Bimber. Unsynchronized 4D barcodes. In Advances in Visual Computing, pages 363–374. Springer, 2007.
- [9] C.-Y. Lin and S.-F. Chang. Distortion modeling and invariant extraction for digital image print-and-scan process. In Int. Symp. Multimedia Information Processing, 1999.
- [10] P.-Y. Lin, Y.-H. Chen, E. J.-L. Lu, and P.-J. Chen. Secret hiding mechanism using QR barcode. In Signal-Image Technology & Internet- Based Systems (SITIS), 2013 International Conference on, pages 22–25. IEEE, 2013.
- [11] J. Picard. Digital authentication with copy-detection patterns. In Electronic Imaging 2004, pages 176–183. International Society for Optics and Photonics, 2004.

International Journal of Advance Engineering and Research Development (IJAERD) Volume 3, Issue 12, December -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

- [12] M. Querini, A. Grillo, A. Lentini, and G. F. Italiano. 2D color barcodes for mobile phones. IJCSA, 8(1):136–155, 2011.
- [13] M. Querini and G. F. Italiano. Facial biometrics for 2D barcodes. In Computer Science and Information Systems (FedCSIS), 2012 Federated Conference on, pages 755–762. IEEE, 2012.
- [14] J. Rouillard. Contextual QR codes. In Computing in the Global Information Technology, 2008. ICCGI'08. The Third International Multi- Conference on, pages 50–55. IEEE, 2008.
- [15] B. Sklar. Digital communications, volume 2. Prentice Hall NJ, 2001.