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Abstract- As we know that, the wind energy provides opportunities to generate power cheaply and cleanly without affecting 

the environment. But due to rapid growth of wind power generation in the recent years, accurate wind power prediction is 

necessary for reliable power system operation. This paper introduced a method of short term wind power prediction for a 

wind power plant by using matrix factorization technique based on historical data of wind speed. We have taken ten years of 

historical wind speed data of Rotterdam, Netherland and Schiphol, Netherlands. From this wind speed data one to nine year 

of data has taken as training data set and last one year (10th year) of data has taken as test data set. The test data set has 

taken as fix and the training data set has taken as different (changing the size of training data set) for measured results. The 

test results of the prediction are presented and analyzed in this thesis. The prediction proposed is shown to achieve a high 

accuracy with respect to the measured data. 

 

Index Terms— Matrix Factorization, MyMediaLite, Wind Speed Prediction, Optimization of Error 

 

I. INTRODUCTION 

 

lectricity is generated in different of ways. Apart from solar power generation, other forms of electricity generation are in 

same way that primary energy pushes prime mover, and then the prime mover drives generators to generate electricity. Wind 

energy has many characteristic which other fossil energy doesn‟t have, such as clean, intermittent and randomness. This is 

because the wind is a natural phenomenon. Wind energy converts into mechanical energy in the way that wind blow through 

fans to drive rotor rotation. And then the energy converts into electricity without generating pollution and radiation which 

will be generated in the electricity conversion process of conventional energy. The reason why the demand for wind power 

around grows involves many aspects, including the shortage of energy, change in climate, the progress of economy and 

technology etc.  

As of the end of 2016, the worldwide total cumulative installed electricity generation capacity from wind power amounted to 

486,790 MW, an increase of 12.5% compared to the previous year. Installations increased by 54,642 MW, 63,330 MW, 

51,675 MW and 36,023 MW in 2016, 2015, 2014 and 2013 respectively [1]. Since 2010 more than half of all new wind 

power was added outside of the traditional markets of Europe and North America, mainly driven by the continuing boom in 

China and India. At the end of 2015, China had 145 GW of wind power installed. In 2015, China installed close to half of the 

world's added wind power capacity.  

Several countries have achieved relatively high levels of wind power penetration, such as 39% of stationary electricity 

production in Denmark, 18% in Portugal, 16% in Spain, 14% in Ireland and 9% in Germany in 2010. As of 2011, 83 

countries around the world are using wind power on a commercial basis. Wind power's share of worldwide electricity usage 

at the end of 2014 was 3.1% [1]. 

E 
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Fig. 1 Worldwide Wind power installed capacity (2001-2006) 

 

It has been estimated by the World Wind Energy Association (WWEA) that by the year of 2020 around 12% of the world‟s 

electricity will be available through wind power, making wind energy one of the fastest growing energy resources [2] but 

integrating wind energy into existing electricity supply systems has been a challenge and numerous objections have been put 

forward by traditional energy suppliers and grid operators, especially for large-scale use of this energy source. The biggest 

concern is that availability mainly depends on meteorological conditions and production cannot be adjusted as conveniently 

as other more conventional energy sources, this is because of our inability to control the wind. A single Wind Turbine (WT) 

is highly variable and its dependency on wind conditions can result in zero output for more than thousands of hours during 

the course of a year, however, aggregating wind power generation over bigger areas decreases this chance.  

This is where wind power forecasting systems come into play, a technology that can greatly improve the integration of wind 

energy into electricity supply systems as forecasting systems provide information on how much wind power can be expected 

at any given point within the next few hours or days.  

The productions of wind turbine power rely on the energy carry in the wind. Wind power density is a fundamental measuring 

unit of the energy that carried by the wind or area's power per unit normal to wind azimuth. As Equation (1) where 𝑣 is 

horizontal element of the mean free Stream wind velocity (m/s), A is area (𝑚2), 𝑃 is wind power (W/𝑚2) and p is air density 

(kg/𝑚3). 

𝑃 = 0.5𝜌𝐴𝑣3(1) 

Nevertheless, both air density and wind velocity are usually not consistent, outcomes in characteristics of strong dynamic 

power generation through a wind turbine. This characteristic of dynamic power production has two key aspects. For instance, 

from temporal and geographic point of view and if we see from geographic perspective, each turbine's power outputs rely on 

its wind farm geographic location that is usually different. The industry standard is associate the power of turbine to the hub 

height wind velocity [3]. 

There are many forecasting methods available. These methods can be cataloged into numeric weather prediction (NWP) 

methods, statistical methods, methods based upon artificial neural networks (ANNs), and hybrid approaches. NWP methods 

could be the most accurate technique for short-term forecasting. However, in general, statistical, ANN methods, or several 

advanced hybrid methods based on observations perform more accurately over the very short-term forecast range [4]. 

There are some drawbacks of neural networks. First, they have been criticized as being useful for prediction, but not always 

in understanding a model. It is true that early implementations of neural networks were criticized as “black box” prediction 

engines; however, with the new tools on the market today, this criticism is debatable. Secondly, neural networks are 

susceptible to over-training. If a network with a large capacity for learning is trained using too few data examples to support 

that capacity, the network first sets about learning the general trends of the data [5]. This is desirable, but then the network 

continues to learn very specific features of the training data, which is usually undesirable. Such networks are said to have 

memorized their training data, and lack the ability to generalize. Thus, For avoid this drawbacks of ANN method for 

prediction we moved on other method of prediction is Matrix Factorization. 
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Generally, Matrix factorization technique has used in recommender system. Recommender system have mainly two task like 

predict the user rating of particular item and second one is recommendation of top items. But in this paper we used matrix 

factorization technique for wind speed prediction only.  

Most of the matrix factorization models are based on the linear factor model. In a linear factor model, wind speed matrix is 

modeled as the product of a day‟s coefficient matrix and an hour‟s factor matrix. During the training step, a low rank 

approximation matrix is fitted under the given loss function. One of the most commonly used loss function is sum-squared 

error. The sum-squared error optimized low rank approximation can be found using Singular Value Decomposition (SVD) or 

QR factorization [6].  

The values of wind power distributions are needed for site selection, performance prediction and planning of wind turbines. 

Moreover, prediction of wind speed is needed for any regional inventory wind energy studies in advance. In this sense, the 

establishment of a model for wind speed correlation in a region is of great importance in the management of wind energy 

resources for power generation as well as in other research fields related to energy conservation [7]. The scope of this paper 

is confined to the statistical approach of forecasting of wind speeds and power using real experimental data collected over a 

period of ten years. Specific wind data from the Rotterdam, Netherland and Schiphol, Netherland were used to obtain both 

one step-ahead forecasts of wind speeds and power. The tools used for forecasting are Matrix Factorization (MF), 

MyMediaLite Recommender System Library and nonlinear models built with Visual studio computer software. 

II. MATRIX FACTORIZATION 

Some of the most successful realizations of latent factor models are based on matrix factorization. In its basic form, matrix 

factorization characterizes both hours and days by vectors of factors inferred from hour wind speed patterns. High 

correspondence between hour and day factors leads to a prediction. These methods have become popular in recent years by 

combining good scalability with predictive accuracy. In addition, they offer much flexibility for modeling various real-life 

situations. Prediction systems rely on different types of input data, which are often placed in a matrix with one dimension 

representing days and the other dimension representing hours. 

A. Basic Matrix Factorization Model 

Matrix factorization models map both days and hours to a joint latent factor space of dimensionality f, such that day-hour 

interactions are modeled as inner products in that space. Accordingly, each hour h is associated with vectorqh ∈ Rf , and each 

day d is associated with a vector pd ∈  Rf. For a given hour h, the elements of qh measure the extent to which the hour 

possesses those factors, positive or negative. For a given day d, the elements of pdmeasure the extent of interest the day has 

in hour that are high on the corresponding factors, again, positive or negative. The resulting dot productqh
T pd  captures the 

interaction between day d and hour h—the day‟s overall wind speed in the hour‟s characteristics. This approximates day d‟s 

wind speed of hour h, which is denoted by wdh , leading to the estimate 

wdh = qh
T pd                                    (2) 

The major challenge is computing the mapping of each hour and day to factor vectorsqh , pd∈Rf . After the prediction system 

completes this mapping, it can easily estimate the wind speed of any hour of any day by using equation (2). 

Such a model is closely related to singular value decomposition(SVD), a well-established technique for identifyinglatent 

semantic factors in information retrieval. Applying SVD in the collaborative filtering domain requires factoring the day-hour 

wind speed matrix. This often raises difficulties due to the high portion of missing values caused by sparseness in the day-

hour wind speed matrix. Conventional SVD is undefined when knowledge about the matrix is incomplete. Moreover, 

carelessly addressing only the relatively few known entries is highly prone to over fitting. 

Earlier systems relied on imputation to fill in missing wind speed and make the wind speed matrix dense [8]. However, 

imputation can be very expensive as it significantly increases the amount of data. In addition, inaccurate imputation might 

distort the data considerably. To learn the factor vectors (qh  and pd), the system minimizes the regularized squared error on 

the set of known wind speeds: 

minq,p  (wdh − qh
T pd )2 + λ(| qh  |

2 + | pd |
2) (d,h)Є𝑘  (3) 

Here, k is the set of the (d, h) pairs for which wdh is known (the training set). 

The system learns the model by fitting the previously observed wind speed. However, the goal is to generalize those previous 

wind speeds in a way that predicts future, unknown wind speeds. The second term of the formula is the regularization term, 
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which ensures that the system does not over fit on the available data. Cross-validation (the day of different splits of training 

set and test set) is often used to avoid this. The λ factor determines to which extent the available wind speeds are regularized. 

The regularization avoids over fitting, which implies that the previous wind speeds are formed into general notions and thus 

can be used for future predictions. Thus, the system should avoid over fitting the observed data by regularizing the learned 

parameters, whose magnitudes are penalized. 

B. Learning Algorithms 

Two approaches to minimizing equation (3) are stochastic gradient descent (SGD) and alternating least squares (ALS).  

1. Stochastic gradient descent 

There are several ways to minimize the given function for regularized squared errors, one of which is „stochastic gradient 

descent‟. This is a learning algorithm that loops through the different wind speeds in the training set and for every case a 

prediction is made and then compares is to the actual wind speed to calculate the error: 

edh = wdh - qh
T pd                      (4) 

It then modifies the parameters proportional to γ in the opposite direction of the gradient or derivative in that point:  

qh     ←   qh+  γ (edh .pd- λ.qh ) 

pd←    pd+ γ (edh .qh - λ.pd) 

This way the optimal parameters are learned as the looping continues, leading to the eventual best set of parameters for every 

day-hour pair. The looping process continues until all cases are treated or when convergence takes place then no more 

modifications are made to qh  and  pd  . However because it has to run through all of the possible cases this involves many 

calculations. In recent research it has been shown that this kind of learning algorithm involves too many calculations to be 

feasible for large datasets. 

 

2. Alternating least squares 

An alternative to the stochastic gradient descent approach is the „alternating least squares‟ approach. In this approach one of 

the feature vectors (qh , pd  ) is fixed. This causes the formula of the regularized least squares to become quadratic and can 

then be solved to find their optima‟s. It then rotates between fixing the day vector pd  and the hour vector qh  by doing this the 

„regularized least squares‟ is decreased in every step until no more change is made by fixing one of the vectors 

(convergence). This method has the benefit, comparing to stochastic gradient descent, that in sparse training sets it does not 

loop endlessly through all the empty cases, however it starts with a certain value, which reduces the workload of the learning 

algorithm. In research is also mentioned that because of the constant fixing of one feature vector for a day or a hour it can 

perform its calculations in parallel, which also reduces the running time. 

When allpd‟s are fixed, the system recomputed theqh ‟s by solving a least-squares problem  

                                  ||W - PQT || 

We can fix the matrix P and Q one by one, such that minimization problem would be equivalent to                        

W = PQT  

QT= (PTP) 
−1

PTW   (P is Fix) 

P = WQ(QTQ) 
−1

 (Q is Fix) 

 

 

Learning rule: 

QT  ←  (PTP) 
−1

PTW 

P   ←   WQ(QT Q) 
−1

 

While in general stochastic gradient descent is easier and faster than ALS, ALS is favorable in at least two cases. The first is 

when the system can use parallelization. In ALS, the system computes each qh independently of the other hour factors and 

computes each pd independently of the other day factors. This gives rise to potentially massive parallelization of the 

algorithm. The second case is for systems centered on implicit data. Because the training set cannot be considered sparse, 

looping over each single training case—as gradient descent does—would not be practical. ALS can efficiently handle such 

cases. 
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III. MY MEDIA LITE LIBRARY 

MyMediaLite is an open-source library of recommender system algorithms [9]. It focuses on two scenarios in collaborative 

filtering: Rating Prediction and Item Prediction from positive-only implicit feedback. It contains state-of-the-art algorithms 

for both tasks and does not require deep knowledge of programming to use. It was written in C#, but since then many 

applications have been made to modify it through other languages, like java, Python, etc. Its applications so far have mostly 

been for research purposes and development of new recommender algorithms, nevertheless it could also be used quite easily 

by companies to implement a recommender system. Besides the available algorithms it also provides the possibility of using 

self-developed recommender algorithms and the possibility to evaluate a recommender system on certain criteria like „Root 

Mean Square Error (RMSE)‟ and „Mean Average Error (MAE)‟. The framework can be compared to a similar recommender 

system library called „Duine Recommender‟ [10]. This library provided a set of recommender system algorithms together 

with the possibility of combining these algorithms (hybridizer) to form a hybrid recommender system. However as it was last 

updated in 2009, it does not offer state-of-the-art recommender algorithms, unlike the MyMediaLite framework, which was 

updated December 31st 2015.  

To use the functionalities of the MyMediaLite framework the library only has to be downloaded and can then be accessed 

with the command-line tool which is available in every operating system. Its flexibility and extensibility have also been 

proven in several cases (such as the KDD Cup). It is both capable of making accurate recommendations as well as producing 

feasible runtimes for the available algorithms.  

The rating files can be in different formats, it supports both integer and non-integer ratings. It consists of the user ID, the item 

ID and the rating value. The different values can be separated by a tab (.tsv), a whitespace or a comma (.csv), where tsv 

stands for “tab-separated values and csv stands for comma-separated values. It also allows for time and date stamping as this 

is often crucial for time-aware recommenders. The timestamps are given by a number, e.g. “978300760” and date stamps are 

written as “2005-12-04” for example. These are put behind the user ID, item ID and rating value and are separated by the 

same character that was used in the separation between the ID‟s and the rating value. An example of rating data with a date 

and time stamp is given by [6]: 

 
Fig.2 rating data with date and time stamp 

 

But, in our case we have wind speed data with day and hours. Thus, we have three columns in the csv file like Day Id, Hour 

Id, and Wind Speed Id respectively.  

IV. RESULTS AND DISCUSSION 

A.  Analysis of wind speed data 

The wind speed characteristics in two selected locations in the Rotterdam, Netherlands and Schiphol, Netherlands were 

investigated using wind speed data. We have taken ten year of wind speed data of Rotterdam, Netherlands and Schiphol, 

Netherlands. Here, Rotterdam wind speed data considered as a WF-1(Wind Farm-1) and Schiphol wind speed data 

considered as a WF-2(Wind farm-2). From the ten years of wind speed data, last one year of data taken as a test data set and 

one to nine year of data taken as a training data set. We will change the training data set (one year to nine year) and Test data 

set is a fixed for all the result. First of all we will predict the last two hour of wind speed for all the day of test data set by 

taking different training set. 

The analytic graph of ten year wind speed for WF-1 and WF-2 are following: 
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Fig. 3 Ten years wind speed data of WF-1 

 

 
Fig. 4 Ten years wind speed data of WF-2 

B. Results of Error on 23h and 24h 

In the test data set, we have taken 1 to 22 hour as a known wind speed and 23 and 24 hour wind speed are unknown. So we 

will predict the wind speed on 23 and 24 hour of all the days of test data set and measure the errors for rank of matrix 1 to 24. 

First we taken only one year of data as a training data set and predict the wind speed on 23 and 24 hour of all the days of test 

data set and measured the different errors like maximum error, minimum error, mean absolute error and root mean square 

error on the 23 hour and 24 hour of the test data set showing in Fig.5 and Fig.6 for WF- and WF-2 respectively. 

Now, same as we take 2 to 9 year of data as a training data set and calculate the different errors on 23 hour and 24 hour. By 

analysis of these all graphs of the error we can say that the error on 24 hour is larger than the error on 23 hour. Thus, if we 

predict wind speed is only one hour then the error will be minimum compared to error on second hour prediction. 

 

C. Results of minimum error on 23h and 24h 

From the all the year of training data set we get minimum error for all the size of training set (1 to 9 years)for both the wind 

farm. The minimum error shows in Fig. 7 and Fig. 8 
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 Fig. 5 WF-1 one year training data 

 

 
            

Fig. 6 WF-2 one year training data 

D. Condition for minimum errors 

We get minimum error on different point of the graph. In the following table we have indicated the minimum error on 

particular point (size of training data set and rank of factorization). 

Here, different error like Maximum Error 23, Maximum Error 24, Minimum Error 23, Minimum Error 24, MAE 23, MAE 

24, RMSE 23 and RMSE 24 are minimum for the particular size of training data set and rank of factorization of matrix. For 

WF-1 size of training data set are three, four and nine years for minimization of errors. For WF-2 size of training data set are 

four, seven and eight years for minimization of errors. Table 1 and Table 2 are showing the minimum error of particular 

conditions for WF-1 and WF-2 respectively. For this all particular condition of minimum errors we have optimized which 

condition will better for prediction of wind speed for particular wind farm.  
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Fig. 7 WF-1 minimum errors 

 

 
 

Fig. 8 WF-2 minimum errors 

 

Table 1 Condition of minimum error for WF- 1 

WF-1 Minimum error Condition 

Max23 3.968 3 year and R6 

Max24 5.475 4 year and R13 

Min23 -4.530 9 year and R18 

Min24 -4.176 4 year and R11 

MAE23 0.792 9 year and R24 

MAE24 0.935 9 year and R12 

RMSE23 1.122 9 year and R20 

RMSE24 1.299 9 year and R12 
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Table 2 Condition of minimum error for WF- 1 

WF-1 Minimum error Condition 

Max23 3.640 8 year and R9 

Max24 3.776 4 year and R22 

Min23 -6.629 8 year and R23 

Min24 -6.955 7 year and R9 

MAE23 0.817 8 year and R23 

MAE24 1.016 8 year and R23 

RMSE23 1.175 8 year and R23 

RMSE24 1.348 8 year and R23 

 

E. Optimization of condition for minimum errors 

For the optimization of condition for minimum errors we have predicted hourly wind speed of last one day as well as last ten 

days for both the wind farm. For the prediction of hourly wind speed we have shifted each element of matrix on the left side 

and first element of each rows are shifted on last element of their upper row. Here, some tables are given for the Maximum 

error, Minimum error, MAE and RMSE of the hourly wind speed prediction for last one day and last ten days of both the 

wind farm. 

 

Table 3 Min. errors condition analysis of one day wind speed prediction for WF-1 

Condition Max. 

error 

Min. 

error 

MAE RMSE 

9 year and R12 1.435 -0.851 0.552 0.660 

9 year and R18 1.442 -1.067 0.572 0.688 

9 year and R20 1.239 -1.067 0.555 0.653 

9 year and R24 1.501 -0.982 0.562 0.684 

4 year and R11 1.515 -0.882 0.569 0.697 

4 year and R13 1.611 -0.941 0.562 0.684 

3 year and R6 1.529 -0.624 0.648 0.769 

 

Table 4 Min. errors condition analysis of ten days wind speed prediction for WF-1 

Condition Max. 

error 

Min. 

error 

MAE RMSE 

9 year and R12 
4.231 -3.723 0.809 1.082 

9 year and R18 
3.945 -3.666 0.804 1.072 

9 year and R20 
3.855 -3.615 0.798 1.049 

9 year and R24 
4.109 -3.711 0.795 1.067 

4 year and R11 
4.789 -3.807 0.909 1.204 

4 year and R13 
4.974 -3.825 0.902 1.201 

3 year and R6 
4.443 -4.234 1.039 1.345 

 

 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 4, Issue 7, July-2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 
 

@IJAERD-2017, All rights Reserved  360 

Table 5 Min. errors condition analysis of one day wind speed prediction for WF-2 

Condition Max. 

error 

Min. 

error 

MAE RMSE 

8 year and R9 1.849 -1.261 0.644 0.829 

8 year and R11 1.851 -1.037 0.591 0.767 

8 year and R23 1.844 -1.056 0.559 0.759 

7 year and R9 1.836 -1.184 0.583 0.782 

4 year and R22 1.883 -1.239 0.646 0.854 

 

Table 6 Min. errors condition analysis of ten day wind speed prediction for WF-2 

Condition Max. 

error 

Min. 

error 

MAE RMSE 

8 year and R9 4.203 -4.891 0.918 1.233 

8 year and R11 
3.997 -4.643 0.897 1.185 

8 year and R23 3.594 -4.440 0.854 1.136 

7 year and R9 4.163 -4.823 0.901 1.202 

4 year and R22 
4.093 -4.689 0.916 1.216 

 

Each and every wind farms have different characteristics of the wind speed. Thus, the selection of training set size and rank 

of matrix factorization are different for different wind farm. From the analysis of the condition of minimum error for WF-1 

and WF-2 are different. According to the relation between wind energy and system operation action [14] they consider 

RMSE is the minimum as possible. By analyzed these conditions we get minimum RMSE when we selected nine year 

training data set and Rank 20 for WF-1. And we get minimum RMSE when we selected eight year training data set and Rank 

23. 

Thus, we get best results for hourly wind speed prediction by selecting nine year training data set and  Rank 20 for WF-1 and 

by selecting eight year training data set and Rank23. 

 

 
 

Fig. 9 Hourly wind speed prediction for one day of WF-1 
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   Fig. 10 Hourly wind speed prediction for ten days of WF-1 

 

 
            

Fig. 11 Hourly wind speed prediction for one day of WF-2 

 

 
Fig. 12 Hourly wind speed prediction for ten days of WF-2 

 

After predicting this wind speed we can predict the wind power by using the equation (1). 
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V. CONCLUSION 

This paper intends to present the basics on prediction of wind speed with Matrix Factorization, define different errors like 

maximum error, minimum error, MAE, RMSE. However, these errors changed with change in the size of training data set. 

And these errors are changed with different wind farm characteristics. If we increase the duration of prediction the MAE and 

RMSE are also increased. For the different number of factorization of the matrix these are also changed. As we decreased the 

training data set and   rank of factorization the time taken for the output of prediction is also decreased in visual studio 

(MyMediaLite Library).  

A general conclusion that may be drawn from the obtained results is that both wind farms, if we increase the duration of 

prediction the MAE and RMSE are also increased. And the MAE and RMSE are decreased with more historical data of wind 

speed. Matrix Factorization method achieve slightly better prediction, but they need Re-factorization during prediction of 

each and every hour wind speed prediction.  The predicted wind speed is much more accurate when the predictions are 

performed with an hour in advance than when they are done with more than one hour prediction, as it is error on 23 hour and 

24 hour. 
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