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I. INTRODUCTION 

 

Higher order boundary value problems arise in the study of fluid dynamics, hydrodynamic, astrophysics, hydro 

magnetic stability, astronomy, beam and long wave theory, induction motors, engineering and applied physics. The 

boundary value problems of higher order have been examined due to their mathematical importance and applications in 

diversified applied sciences 

The HAM contains a certain auxiliary parameter h   which provides us with a simple way to adjust and control the 

convergence region and rate of convergence of the series solution. Moreover, by means of the so-called h  -curve, it is 

easy to determine the valid regions of  h  to gain a convergent series solution. Thus, through HAM, explicit analytic 

solutions of non linear problems are possible.  

 

 

II. HOMOTOPY ANALYSIS METHOD 

  

 

We consider the following differential equations, 

 , 0, 1,2, ,i iN S x t i n      

Where iN are nonlinear operators that the represents the whole equations, x  and t  are independent variables and 

( , )iS x t are unknown functions respectively. 

By means of generalizing the traditional homotopy method, Liao constructed the so-called zero-order deformation 

equations 

       ,01 , ,; , , ,;i i i i iq L x t q S x t qh N x t q               (1) 

Where [0,1]q is an embedding operators, ih are nonzero auxiliary functions, L  is an auxiliary linear operator, 

,0 ( , )iS x t are initial guesses of ( , )iS x t and  , ,;i x t q are unknown functions. 

It is important to note that, one has great freedom to choose auxiliary objects such as ih  and L  in HAM. 

When 0 1q and q  we get by (1), 

       ,0, ,;0 , , ,;1 ,i i i ix t S x t and x t S x t     

Thus q  increase from 0 to 1, the solutions  , ,;i x t q varies from initial guesses ,0 ( , )iS x t  to ( , )iS x t . 

Expanding  , ,;i x t q  in Taylor series with respect to , 

     ,0

1

,, ,; , , . m

i i i m

m

x t q S x t S x t q




                                                    (2) 

Where  

 
 

,

0

, ,;1
, .

!

m

i

i m m

q

x t q
S x t

m q


  
  

  
     (3) 

If the auxiliary linear operator, initial guesses, the auxiliary parameter  and auxiliary functions are properly chosen than 

the series equation (2) converges at 1q  . 
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     ,0

1

,, ,;1 , , .i i i m

m

x t S x t S x t




       (4) 

This must be one of solutions of the original nonlinear equations. 

According to (3), the governing equations can be deduced from the zero-order deformation equations (1). 

Define the vectors 

       , ,0 ,1 ,2 ,  { , , , , , , ., , }i n i i i i nS S x t S x t S x t S x t 


 

Differentiating (1) m times with respect to the embedding parameter  and the setting 0q  and finally dividing them 

by !m  

We have the so-called 
thm  order deformation equations  

   , , 1 , , 1), , (i m m i m i i m i mL S x t S x t h R S  
   


    (5) 

Where  

 
 

 1

, , 1) 1

0

[ , ,;1
.

1 !

m

i i

i m i m m

q

N x t q
R S

m q



 



  
  

   
   (6) 

0, 1

1, 1
m

m

m



 


 

 

 

III. HOMOGENEOUS LINEAR ORDINARY DIFFERENTIAL EQUATION  

 

 

Consider homogeneous non linear differential equation 

     
2 2 3 0xx xu u u                                                                    (7) 

Subject to the initial condition 

(0) 1, '(0) 2u u                                                               (8) 

To solve this system (7) to (8) by HAM, first we choose initial approximation 

0 ( ) 1 2u x x 
             

 

And the linear operator 

  
 ;

;
x q

L x q
x








 

With the property   0L C  where C  is integral constant.  

We define system of non-linear operator as 

                                          
  

   
 

2

2

; ;
; 2 2 3 ;

x q x q
N x q x q

xx

 
 

 
  


                             (9) 

Using the above definition, we construct the zeroth-order deformation equations 

                                                 
        01 ; ;q x q S x qhN x q          (10) 

Obviously, when 0q   and 1q   we get 

     0 0;0x S x u x    and  ;1 ( )x u x        (11) 

As q  increase 0  to1,   varies from  0u x  to  u x  Expanding  ;x q  in Taylor series with respect to q  , 

   

     0

1

; m

m

m

x q S x S x q




        (12) 

Where 

   

 
 

0

;1

!

m

m m

q

x q
S x

m q





 
  

 
      (13) 

If the auxiliary linear operator, initial guesses, the auxiliary parameter h and auxiliary functions are properly chosen than 

the series equation (12) converges at 1q  . 
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     0

1

;1 m

m

x S x S x




   

   i.e.      0

1

m

m

u x S x S x




   

This must be one of solutions of the original non linear equations as proved by Liao Define the vectors 

      
        0 1 2, , , .....n nS S x S x S x S x


     (14) 

We have the so-called 
thm order deformation equations 

   
    1m m m m mL S x S x hR S    


     (15) 

Where 

   
 

 1

1 1

0

;1

1 !

m

m m m

q

x q
R S

m q



 



 
  

  


     (16) 

   i.e.    1 1 1 12 2 3m m m m mxx x
R S S S S     


    (17) 

   

     1 1

0

x

m m m m mS x S x h R S dx c    


    (18) 

Now we will calculate 

   

     1 1 0 1 0

0

x

S x S x h R S dx c  


     (19) 

Where 

 1 0 6 1R S x 


 

So  

   2

1 3S x h x x   

Now The 
thN order approximation can be expressed by 

   

     
1

0

1

N

m

m

S x S x S x




        (20) 

As N   we get    S x u x with some appropriate assumption of h   

 

 

 

IV. NON HOMOGENEOUS LINEAR ORDINARY DIFFERENTIAL EQUATION 

 

 

Consider non homogeneous linear differential equation 

3 2 2 8 0xx xu u u            (21) 

Subject to the initial condition 

(0) 0, '(0) 2u u         (22) 

To solve this system (21) to (22) by HAM, first we choose initial approximation 

0 ( ) 2u x x  

And the linear operator 

  
 ;

;
x q

L x q
x








 

With the property   0L C  where C  is integral constant.  

We define system of non-linear operator as 

  
   

 
2

2

; ;
; 3 2 2 ; 8

x q x q
N x q x q

xx

 
 

 
   


    (23) 

Using the above definition, we construct the zeroth-order deformation equations 
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        01 ; ;q x q S x qhN x q           (24) 

Obviously, when 0q   and 1q   we get 

     0 0;0x S x u x    and  ;1 ( )x u x       (25) 

As q  increase 0  to1,   varies from  0u x  to  u x  Expanding  ;x q  in Taylor series with respect to q  , 

   

     0

1

; m

m

m

x q S x S x q




         (26) 

Where 

   

 
 

0

;1

!

m

m m

q

x q
S x

m q





 
  

 
      (27) 

If the auxiliary linear operator, initial guesses, the auxiliary parameter h and auxiliary functions are properly chosen than 

the series equation (26) converges at 1q  . 

     0

1

;1 m

m

x S x S x




   

i.e.      0

1

m

m

u x S x S x




   

This must be one of solutions of the original non linear equations as proved by Liao Define the vectors 

   
        0 1 2, , , .....n nS S x S x S x S x


    (28) 

We have the so-called 
thm order deformation equations 

   
    1m m m m mL S x S x hR S    


     (29) 

Where 

   
 

 1

1 1

0

;1

1 !

m

m m m

q

x q
R S

m q



 



 
  

  


     (30) 

  i.e.    1 1 1 13 2 2 8m m m m mxx x
R S S S S      


    (31) 

   

     1 1

0

x

m m m m mS x S x h R S dx c    


    (32) 

Now we will calculate 

   

     1 1 0 1 0

0

x

S x S x h R S dx c  


       (33) 

Where 

 1 0 4 4R S x 


 

So  

  2

1 2 4S x h x x     

Now The 
thN order approximation can be expressed by 

   

     
1

0

1

N

m

m

S x S x S x




        (34) 

As N   we get    S x u x with some appropriate assumption of h   

 

V. NON HOMOGENEOUS NON LINEAR ORDINARY DIFFERENTIAL EQUATION 

 

 

Consider non homogeneous non linear differential equation 

 
2

4 5 0xx xu u u           (35) 
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Subject to the initial condition 

(0) 1, '(0) 0u u        (36) 

To solve this system (35) to (36) by HAM, first we choose initial approximation 
2

0 ( ) 1u x x   

And the linear operator 

  
 ;

;
x q

L x q
x








 

With the property   0L C  where C  is integral constant.  

We define system of non-linear operator as 

  
   

 

22

2

; ;
; 4 ; 5

x q x q
N x q x q

xx

 
 

  
    

  
   (37) 

Using the above definition, we construct the zeroth-order deformation equations 

        01 ; ;q x q S x qhN x q          (38) 

Obviously, when 0q   and 1q   we get 

     0 0;0x S x u x    and  ;1 ( )x u x      (39) 

As q  increase 0  to1,   varies from  0u x  to  u x  Expanding  ;x q  in Taylor series with respect to q  , 

   

     0

1

; m

m

m

x q S x S x q




       (40) 

Where 

   

 
 

0

;1

!

m

m m

q

x q
S x

m q





 
  

 
     (41) 

If the auxiliary linear operator, initial guesses, the auxiliary parameter h and auxiliary functions are properly chosen than 

the series equation (40) converges at 1q  . 

     0

1

;1 m

m

x S x S x




   

i.e.      0

1

m

m

u x S x S x




   

This must be one of solutions of the original non linear equations as proved by Liao Define the vectors 

   
        0 1 2, , , .....n nS S x S x S x S x


   (42) 

We have the so-called 
thm order deformation equations 

   
    1m m m m mL S x S x hR S    


    (43) 

Where 

   
 

 1

1 1

0

;1

1 !

m

m m m

q

x q
R S

m q



 



 
  

  


    (44) 

   i.e.    1 1 1 1 14 5m m m m m mxx x
R S S S S S       


  (45) 

   

     1 1

0

x

m m m m mS x S x h R S dx c    


   (46) 

Now we will calculate 

   

     1 1 0 1 0

0

x

S x S x h R S dx c  


    (47) 

Where 

  4 2

1 0 2 10R S x x   

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So  

 
5 3

1

2
10

5 3

x x
S x h

 
    

 
 

Now The 
thN order approximation can be expressed by 

   

     
1

0

1

N

m

m

S x S x S x




       (48) 

As N   we get    S x u x with some appropriate assumption of h   

 

 

 

VI.  HOMOGENEOUS NON LINEAR ORDINARY DIFFERENTIAL EQUATION 

 

Consider homogeneous non linear differential equation 

 
2

3 0xx xu u u u           (49) 

Subject to the initial condition 

(0) 1, '(0) 1u u        (50) 

To solve this system (49) to (50) by HAM, first we choose initial approximation 
2

0 ( ) 1u x x x    

And the linear operator 

  
 ;

;
x q

L x q
x








 

With the property   0L C  where C  is integral constant.  

We define system of non-linear operator as 

  
 

 
 

 

22

2

; ;
; ; 3 ;

x q x q
N x q x q x q

xx

 
  

  
   

  
  (51) 

Using the above definition, we construct the zeroth-order deformation equations 

        01 ; ;q x q S x qhN x q          (52) 

Obviously, when 0q   and 1q   we get 

     0 0;0x S x u x    and  ;1 ( )x u x      (53) 

As q  increase 0  to1,   varies from  0u x  to  u x  Expanding  ;x q  in Taylor series with respect to q  , 

   

     0

1

; m

m

m

x q S x S x q




       (54) 

Where 

   

 
 

0

;1

!

m

m m

q

x q
S x

m q





 
  

 
     (55) 

If the auxiliary linear operator, initial guesses, the auxiliary parameter h and auxiliary functions are properly chosen than 

the series equation (54) converges at 1q  . 

     0

1

;1 m

m

x S x S x




   

i.e.      0

1

m

m

u x S x S x




   

This must be one of solutions of the original non linear equations as proved by Liao Define the vectors 

   
        0 1 2, , , .....n nS S x S x S x S x


   (56) 

We have the so-called 
thm order deformation equations 
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    1m m m m mL S x S x hR S    


    (57) 

Where 

   
 

 1

1 1

0

;1

1 !

m

m m m

q

x q
R S

m q



 



 
  

  


    (58) 

   i.e.    
2

1 1 1 1 13m m m m m mxx x
R S S S S S      


   (59) 

   

     1 1

0

x

m m m m mS x S x h R S dx c    


   (60) 

Now we will calculate 

   

     1 1 0 1 0

0

x

S x S x h R S dx c  


    (61) 

Where 

  2 3 4

1 0 8 2 8 4R S x x x x   


 

So  

  2 3 4 5

1

2 4
4 2

3 5
S x h x x x x

 
    

 
 

Now The 
thN order approximation can be expressed by 

   

     
1

0

1

N

m

m

S x S x S x




       (62) 

As N   we get    S x u x with some appropriate assumption of h   

 

VII. CONCLUSION 

 

Homotopy analysis method is very useful for solving various types of homogeneous, non 

homogeneous, linear, non linear ordinary differential equation. Also, the system of non linear equation can be 

easily solved by homotopy analysis method due to freedom of choosing the parameter h
. 
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