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Abstract — In many network communications it is crucial to be able to authenticate both the contents and the origin of a message. 
This paper will study in detail the problem known in probability theory as the Birthday Paradox (or the Birthday  problem), as well as 

its implications and different related aspects we consider relevant. The Birthday attack makes use of what’s known as the 

Birthday paradox to try to attack cryptographic hash functions. Among other desirable properties of hash functions, an interesting 

one is that it should be collision-resistant, that is it should be difficult to find two messages with the same hash value. To find a 

collision the birthday attack is used, which shows that attacker may not need to examine too many messages before he finds a 

collision. The purpose of this paper is thus to give the reader a general overview of the general aspects and applications of the 

Birthday Paradox.  
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I. INTRODUCTION 

Computer networks are used today for many applications (like banking, e-government etc.) where security is an 

absolute necessary. Changing or stealing data stored in electronic form is so widely spread that not having cryptographic 

tools to preserve the safety of information would make pointless any serious communication or data exchange. In 

general, the functions of security system are confidentiality, authentication, integrity and non-repudiation. The birthday 

problem concerns the probability that in a set of n random people, two of them will share the same birthday. It belongs in 

the field of probability theory and is also known as the birthday paradox, not because the answer is illogical, but because 
most people underestimate this probability thus perceiving it as a paradox. To overcome that problem hash functions that 

map a message to a small digest h(M) are used. Such hash function has to be collision resistant - it should be difficult to 

find two messages with the same hash value[2][8].  

The basic idea behind this paper, as a deviation from widely spread methods, is to examine the birthday attack 

and hash functions that are not dependent on any particular algorithm. This method is universal, because the principles it 

is based on are applicable to various algorithms, independently of the mechanism they use. 

1.1. Hash Function [2][7][9] 

A hash function h should map strings of bits of variable length to fix-length strings of bits, called the hash 

value of the message , where m > t. Ideally it has the following properties: 

 The length of h(M) should be small so that messages can be signed efficiently. 

 The function h should be a publicly known one-way function – it should be hard to find a message that 

hashes to a pre-specified value. 

 It should destroy algebraic relationships between messages and signatures. 

 It should be collision-resistant, that is it should be difficult to find two messages with the same hash value, or 

more precisely: an attacker should not be able to find a pair of messages  such that  

with less than about  work. 

 Preimage-resistance: An attacker given a possible output value for the hash Y should not be able to find an 

input X so that  with less than about  work. 

 Second preimage-resistance: An attacker given one message M should not be able to find a second message, 

M' to satisfy  with less than about   work. 
 

 

 

 

 

 

 

 

 

Figure 1. Hash Function 

1.2. Birthday Paradox 

In the probability theory, the birthday problem pertains to the probability that in a set of n randomly chosen 
people some pair of them will have the same birthday. Contrary to the naive intuition, the required number n of people 
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that will make the probability of some pair having the common birthday greater than 0.5 is not around 180, it is only 23. 

For 57 people, the probability of some pair having common birthday is more than 99%[2][8]. 

The birthday problem concerns the probability that in a set of n random people, two of them will share the 

same birthday. It belongs in the field of probability theory and is also known as the birthday paradox, not because the 

answer is illogical, but because most people underestimate this probability thus perceiving it as a paradox[1]. 

In fact, most people wrongly expect probabilities to be linear, because they only take into account the scenarios 
that they’re involved in. That means they instinctively consider the probability that someone shares a birthday with them, 

while in this case the question is clearly about any two people in the room. The answer to our question from the first 

paragraph is actually 50% (which we will later demonstrate with the mathematical calculations). In a room of 23 people 

there is a 50% chance that two people will share the same birthday, but as we said most people would underestimate this 

number thus creating a seemingly paradoxical situation. 

Another element that comes into play is the pigeonhole principle. It states that “if n + 1 objects are put into n 

boxes, then at least one box contains two or more objects”. For instance, if there are 13 people in a room, at least two of 

them will have their birthday on the same month. According to this logic, the probability of two people having the same 

birthday would reach 100% when there are 367 people in a room (if we consider February 29), since there are 366 

possible birth dates. However, this logic is faulty, since we actually have near 100% probability with far less people, as 

we will further demonstrate[1]. 

 

II. THE BIRTHDAY PARADOX IN CRYPTOGRAPHY 

 Cryptography is known as the art of protecting information by transforming it into an unreadable format. 

Computing-wise, hashing in cryptography is a one way operation that transforms a stream of data into a more 

compressed form called a message digest. The entire message digests or hash values generated by a given hash function 

have the same size regardless of the size of the input value. Cryptographic hash functions are therefore a valuable tool in 

cryptography. They are applied in numerous areas of information security to guarantee the authenticity of messages. A 

hash function H is a transformation that takes a variable-size input m and returns a fixed-size output, which is called the 

hash value h (that is, h = H(m)). 

The basic requirements for a cryptographic hash function are: 

• The input can be of any length, 

• The output has a fixed length, 
• H(x) is relatively easy to compute for any given x 

Hypothetically, there are no collisions in Hash functions, while the birthday paradox contradicts that. In fact, it is 

computationally possible to find any two messages x and y such that H(x) = H(y), even when using a “strongly collision 

free hash function”[1][6]. 

 

2.1 Mathematical Term of Birthday Paradox 

The Birthday attack makes use of what’s known as the Birthday paradox to try to attack cryptographic hash 

functions. The birthday paradox can be stated as follows: What is the minimum value of k such that the probability is 

greater than 0.5 that at least two people in a group of k people have the same birthday? It turns out that the answer is 23 

which is quite a surprising result. In other words if there are 23 people in a room, the probability that two of them have 

the same birthday is approximately 0.5. If there is 100 people (i.e. k=100) then the probability is .9999997, i.e. you are 

almost guaranteed that there will be a duplicate[3]. A graph of the probabilities against the value of k is shown in figure. 

 
Figure 2. The Birthday Paradox 

Although this is the case for birthdays we can generalize it for n equally likely values (in the case of birthdays n = 365). 

So the problem can be stated like this: Given a random variable that is an integer with uniform distribution between 1 and 

n and a selection of k instances (k ≤ n) of the random variable, what is the probability P(n, k), that there is at least one 

duplicate[3].  

It turns out that this value is 

     … (1) 

  … (2) 
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Take it that the following inequality holds 

 
Then,  

 

 

     … (3) 

Now let look at this in terms of hash codes. Remember a hash code is a function that takes a variable length message M 

and produces a fixed length message digest. Assuming the length of the digest is m then there are 2m possible message 

digests. Normally however, because the length of M will generally be greater than m this implies that more than one 

message will be mapped to the same digest. Of course the idea is to make it computationally infeasible to find two 
messages that map to the same digest. However if we apply k random messages to our hash code what must the value of 

k be so that there is the probability of 0.5 that at least one duplicate (i.e. H(x) = H(y) will occur for some inputs x, y).  

This is the same as the question we asked about the birthday duplicates[3]. 

Using this idea we can discuss the birthday attack as follows[3][4]: 

 The source, A is prepared to “sign” a message by appending the appropriate m-bit hash code and encrypting that 

hash code with A’s private key. 

 The opponent generates 2m/2 variations on the message, all of which convey essentially the same meaning. The 

opponent prepares an equal number of messages, all of which are variations of the fraudulent message to be 

substituted for the real one. 

 The two sets of messages are compared to find a pair of messages that produce the same hash code. The 

probability of success is greater than 0.5. If no match is found, additional valid and fraudulent messages are 
generated until a match is made. 

 The opponent offers the valid variation to A for signature. This signature can then be attached to the fraudulent 

variation for transmission to the intended recipient. Because the two variations have the same hash code, they 

will produce the same signature; the opponent is assured of success even though the encryption key is not 

known. If we use a 64-bit hash code then the level of effort required is only on the order of 2m/2 = 264/2 = 232 

which is clearly not sufficient to withstand today’s computational systems. 

The generation of many variations that convey the same meaning is not that difficult as figure 2 shows. 

 
Figure 3. A Letter in 2

37
 Variations 

2.2 Implementation Attacks 

Implementation attacks take on a different approach to the above for discovering the secret key. Instead of attacking the 

mathematical properties of the algorithm these form of attacks (also known as side channel attacks) take advantage of the 

physical phenomena that occurs when a cryptographic algorithm is implemented in hardware. Four side channel attacks 

are listed in the FIPS standard 140-2 “Security Requirements for Cryptographic Modules”, Power Analysis, Timing 

Analysis, Fault Induction and TEMPEST. Here we will be interested mainly in Differential Power Analysis (DPA) as it 

applies to DES at Timing attacks[3].  

 

2.2.1 Differential Power Analysis [3] 
Power Analysis is a relatively new concept but has proven to be quite effective in attacking smartcards and 

similar devices. The smartcard is very susceptible to this form of attack mainly because it applies little or no power 
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filtering due to its small size. It was first demonstrated by Ernst Bovelander in 1997 but a specific attack strategy was not 

given. A year later it was brought to the general public’s attention by Paul Kocher and the Cryptographic Research team 

in San Francisco. Kocher et al. provided an attack strategy that would recover the secret key from cryptographic systems 

running the DES algorithm. This caused great concern amongst the smartcard community and a search for an effective 

countermeasure began. To date a limited number of countermeasures have been proposed and none are fully effective.  

The attacks work equally well on other cryptographic algorithms as shown by Thomas Messages et al. who presented a 
great deal of supplementary research on the subject. Power analysis involves an analysis of the pattern of power 

consumed by a cryptographic module as it performs its operations. The purpose of this pattern analysis is to acquire 

knowledge about causal operations that is not readily available through other sources. 

 

III. APPLICATION OF BIRTHDAY PARADOX 

3.1 Practical Uses 

 

3.1.1 Hash 

If hash values have n bits, it should take 2n tries to find a key mapping to a given hash value, and (2n)2 tries to find two 

keys that map to some common hash value. Therefore the one-way function is considered broken[1]. 

 
Figure 4. Hash Value of Collision Birthday Paradox 

 

3.1.2 MAC (Message Authentication Code) 

MAC is a short piece of information or a security code that is typed in by a computer user in order to access accounts or 

portals. Just like hash, MAC functions possess different security requirements[1]. This is how we compute an 

authentication tag: 

Message authentication: 

tag = MAC(key, M) 

Sender sends (M, tag) 

Receiver verifies that tag matches M 

Authentication with HMAC: 

tag=H(key | M) subject to extension attacks 

tag=H(M | key) relies on collision resistance 

HMAC: Compute tag = H(key | H(key | M)) 

M ≈ (key|M) looks random when key is secret 

 

 

3.2 Other Applications 

In substance, the birthday paradox shows that it is much easier to find a collision when both elements of the pair are not 

fixed. This is true when assuming a homogeneous probability distribution of the outcomes, but it also stands true for non-

homogeneous distributions: actually, when the target distribution is not random, the collision hazard is even greater than 

in the case of pure randomness.  

 

3.2.1 The pseudo random number generator (PRNG) application [1][5] 

PRNG are used in a variety of computer-based applications to circumvent the limits of true random number 

generators. Although true random number generator can be (and are) conceived, they have to respect a number of 

requirements in order to achieve their goal. This makes them suboptimal for applications that require a high amount of 

random data. 

PRNG are thus bridging the gap to fulfill this need by providing a reasonably random suite of numbers, while 
maintaining a good rate of (pseudo-) randomness availability. Also, they are used when large and reproducible random 

data is required – such as in symmetric key cryptography applications. Usually, PRNG take the form of a function, which 

is initialized with a true random value and then produces data by iterating indefinitely. 
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3.2.2 Applications of the birthday paradox in communication networks [1][6] 

This use of the birthday paradox is interesting, because it takes advantage of the predictable risk of collision to 

achieve certain goals. One of them is to optimize the power consumption of communicating nodes of a wireless sensor 

network: the idea here is to optimize the duration and frequency of wake-up time of the transmission stages to minimize 

power consumption (or alternatively to maximize network lifetime), while maintaining a good probability of meet-up 
events in order for the nodes to be kept up-to-date (whether it is for transmitting or receiving data), all this without a  

synchronization clock readily available (because that would require power, reliable transmission media, etc.). 

The birthday paradox, in this case, is used as a statistically reliable mean to guarantee that two unsynchronized 

devices can find a suitable communication slot, while preserving power. 

 

IV. CONCLUSION 

As we have seen throughout this work, the probability that in a set of n random people, two of them will share 

the same birthday, is a problem pertaining to probability theory with many unexpected applications. In the field of 

cryptography, namely Hash functions, we have seen how it is computationally possible to find two messages with the 

same hash value H(x) = H(y), even when a “strongly collision-free hash function” is being used. A contemporary 

solution to this problem has been to increase the size of the hash value of hash functions, the latter needs to be large 

enough to make the possibility of a birthday attack very unlikely. With regards to other applications of the Birthday 
Paradox, we have also studied Pseudo-Random Number Generators (PRNG) as well as applications in communications 

networks. In communication networks, the birthday paradox is applied advantage of the predictable risk of collision to 

achieve certain goals.  
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