

International Journal of Advance
Engineering and Research Development

Scientific Journal of Impact Factor (SJIF): 4.72
Special Issue SIEICON-2017,April -2017

e-ISSN : 2348-4470 p-ISSN : 2348-6406

@IJAERD-2017, All rights Reserved 1

New Tracking Rootkit at Application Layer in Android
Inzmamul Huq Navab1, Nikita Bhangadiya2, Parth Pateliya3, Pooja Tandel4 , Kisori Shekokar5

1Computer Engineering, Sigma Institute of Engineering
2Computer Engineering, Sigma Institute of Engineering
3Computer Engineering, Sigma Institute of Engineering
4Computer Engineering, Sigma Institute of Engineering
5Computer Engineering, Sigma Institute of Engineering

Abstract — Nowadays protecting Data is most preventing issue in mobiles devices. All computer related thing is going to

adopt portability. There is greater chance to be stolen mobile devices. We are going to constitute Rootkit which will work

in System App of mobile device. We will attempt to send location coordinate (GPS signals) using that Rootkit and Thief’s
inserted SIM card number to predefined destination number.

Keywords-Tracking; GPS; covert channel; mobile phone; sms; rootkit; covertly; SystemUI; Injection; compilation;

decompile

I. INTRODUCTION

Android is open sources and uses on daily basis. According to analysis, if thief stoles mobile, he always replacing

his own SIM card. In this research, we have designed such a mechanism of rootkit which detect new SIM card of thief and

send GPS coordinates and mobile number of thief via SMS using that SIM card covertly. A Destination address for SMS

will be predefined in rootkit.

Before Discussing Actual research, we have to go through basic knowledge of Android OS. Android source are

available at Git version control repository.

A. Android Architecture

Android Architecture is based on layered architecture. Each of depth level of layers have own permissions and

access. Android uses Java API Framework contains all necessary functionalities required by Application layer. At lower

layer, android uses Linux drivers and Linux Kernel module. It also has native C and C++ library support and Android

runtime ART for effective compilation of java and xml integration in executable manner.

Figure 1: Android Architecture [9]

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue SIEICON-2017, April -2017,e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2017, All rights Reserved 2

B. Android Permission and Linux Sandbox

Android uses Linux based sandbox .In Linux, Each processes have particular GID (Group ID) or UID (User ID).

Android is slightly different from Linux, it uses Aid (Android application id).As shown in Fig 2, PS shell command gives

all process which currently running in android. Here PID and PPID refer as process id and parent process id respectively.

Here if PID and PPID are same then both are refers from same process ID or we can say as same GID.

Android protects hardware resources, to achieve this goal it divides whole system in access privileges. This access

privileges are known as permissions. There are mainly three type of permissions.1.normal 2.dangorous 3.Signature.As

shown in fig 3, we have listed all permissions using pm list permission command.

In android, there is ANDROID_FILESYSTEM_CONFIG.h (fig 4) file which defines all type of static and dynamic

PIDs. In example, every system daemons and system services have predefined AID in android and All application which

installs by users have start AID from 10,000.

Figure 2: PS command using ADB SHELL

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue SIEICON-2017, April -2017,e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2017, All rights Reserved 3

Figure 3: List of Permissions in android

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue SIEICON-2017, April -2017,e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2017, All rights Reserved 4

Figure 4: Reserved AID for process

C. Android Development environment

Android development environment is not so developed even there is not rigid guide or documentation about android

Source. Even android application development is rich and documented. ADB is android debugging bridge uses as

communication between android mobile and computer via USB. ADB provides facility about shell and file system access

or debugging facility. ADB have PULL or PUSH command. Hence we can easily insert file or retrieve file from android.
Android studio is another development IDE which helps as to compile packages and debug facility provided by GOOGLE

cooperation.

D. System Application and SystemUI.apk

 System applications are resides in /system/apps path in android. This apps are inbuilt by manufacturers, basically

this applications can access all permissions as defined in android policy. As shown in fig 6 system apps are responsible to

handle all of basic need of android such as calling, messaging, showing GUI for widget, Handling Resources and much

more.

In this entire collection of app, one app called as SystemUI.apk. This app is responsible for handling all GUI level

interaction from users. SystemUI manages screens and handle activates. It resides on top of application layer. SystemUI is

activity which always starts after System boot up. After android 3.1 services and boot receivers not starts in absence of

activity. SystemUI is only activity which runs until android lifecycle; hence it is very suitable to implement tracking
rootkit in this apk file at application level.

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue SIEICON-2017, April -2017,e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2017, All rights Reserved 5

Figure 5: Android Studio for development [14]

Figure 6: System apps installed in my android

II. THEORY OF BACKGROUND

Basically, there are thousands of ways to implement rootkit in android. In each release of android from 2.0 to

7.0(latest), Google has improved android architecture and security. Google has restricted permission level more tightly.

Android became more robust.

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue SIEICON-2017, April -2017,e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2017, All rights Reserved 6

Figure 7: rootkit and malware analysis [10]

A. about rootkits

Android is open source hence exploit of its vulnerability is very easy. For expert, it may easy to exploit android

vulnerability.

Rootkits are chunks of program or can be program, application, system program, script, malware (Trojan).Most of

root kits are injected in system level. In example, Modem Injection, TCP/IP layer hacking, Framework hijacking.

B. Types of rootkits

Rootkits are designed for different purpose. Basically all rootkit have one purpose about covey data. As shown in

figure 8, Rootkits uses BOOT, SMS, CALL and most of system resources without user permissions. According to Survey

most prevalent rootkit is Droid kung fu. Droid kung fu injects itself in very low level of android context.

Figure 8: Android rootkit and analysis [11]

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue SIEICON-2017, April -2017,e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2017, All rights Reserved 7

III. Methodology

As we discussed earlier, we are going to design Rootkit in application Layer. Since release of Android 3.2

developers had block start of Broadcast receiver and Service without Activity. Hence it became nearly impossible to

implement rootkit at Application layer. But there is always way to knock .We found that there is activity named SystemUI

which always runs in android context so it is possible to implement Broadcast Receiver and Start Service from SystemUI

activity.

A. Basics of SystemUI and Package Manager

Figure 9: Package Manager in action [12]

Package Manager is responsible for installing and uninstalling Application. Package Manager have daemons such

as installd, voLd .which manages User apps and system apps.

Figure 10: systemUI in packages.list runs in 10018 AID

SystemUI is package installed in /system/apps/ path as SystemUI.apk and SystemUI.odex.SystemUI manages

initial launcher Activity. It manages media,screenshot,settings,status,usb UI .fig 11 shows SystemUI packages structure

from Android open source project(AOSP).In AOSP,it resides in framework/packages/SystemUI.

Figure 11: AOSP SystemUI package Figure 12: AOSP /src/android/SystemUI

B. GPS and Telephony API

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue SIEICON-2017, April -2017,e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2017, All rights Reserved 8

Telephony API provides facility such as call, message to user. Telephony Manager provide methods, service and
state information of Telephony layer. To use android telephony service we need to use call system telephony service, In

example Context.getSystemService(Context.TELEPHONY_SERVICE). Another class in Android Telephony is SMS

manager which can be used as SMS sending, encoding and configuring.

sendTextMessage(String destinationAddress, String scAddress, String text, PendingIntent sentIntent,PendingIntent deliver

yIntent),this method is uses as to send text message. Destination address is about where to send. scAdress about from

which address you need to send. A text parameter defines text message to send.

A GPS (Global positioning system) is widely uses in System. It receives signal from different gps satellite and

calculate location.In android, LocationManager and LocationListner are used for gps location gaining and processing.

Location Listner also use for listen updated current location. requestLocationUpdates(String provider, long minTime, float

minDistance, LocationListener listener, Looper looper) method is reserved for location receiver. We need to just register

location listener to this gps provider.LocationListner listens for location update, provider unable, disable.

C. Retrieving SystemUI.apk using ADB

Now begins fun part. SystemUI retains in /system/apps as discussed before. To retrieve SystemUI we will take help

of ADB.ADB PULL command help to retrieve SystemUI from android.

Figure 13: SystemUI pull from android to PC

D. Decompilation of SystemUI.apk and SystemUI.odex

We have SystemUI in android Context now time to decompile it. As shown in figure Fig 14 apk file is package

which contains resources such as anim ,layout, menu, drawable. However it doesn’t contain any compiled classes like

classes.dex.

Figure 14.Internals of SystemUI.apk

Android developers have decided to create odex file from apk .odex is generally pre optimized version of apk. They

moved classes.dex into odex file.thats why we need to decompile odex file for retrieving classes.dex. To retrieve

classes.dex file from apk we need tool known as backsmail.jar and dex2jar which have framework to decompile

systemUI.odex.as shown in fig, 14 we have view after decompiling system.odex.

https://developer.android.com/reference/android/content/Context.html#getSystemService(java.lang.Class<T>)
https://developer.android.com/reference/android/telephony/SmsManager.html#sendTextMessage(java.lang.String, java.lang.String, java.lang.String, android.app.PendingIntent, android.app.PendingIntent)
https://developer.android.com/reference/java/lang/String.html
https://developer.android.com/reference/java/lang/String.html
https://developer.android.com/reference/java/lang/String.html
https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/reference/android/location/LocationManager.html#requestLocationUpdates(java.lang.String, long, float, android.location.LocationListener, android.os.Looper)
https://developer.android.com/reference/java/lang/String.html
https://developer.android.com/reference/android/location/LocationListener.html
https://developer.android.com/reference/android/os/Looper.html

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue SIEICON-2017, April -2017,e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2017, All rights Reserved 9

Figure 15: view after decompiling SystemUI.apk

Now, we need another tool named Jdcompiler for decompiling .class file to. Java file. Jdcompiler provides read

only class decompilation. if we want to change in this package we has to do changes we have to manually compile java file

and add that .class to this package.

E. Exploit SystemUI.apk and Implementing Rootkit

Now our main goal is to add our service (c_t_s) which starts after boot completion within this package. For this, we

have inject code into BootReceiver.class which can be seen in fig 15.BootReceiver is broadcast receiver which wait for

boot complete intent. BootReciver accepts boot complete intents and starts c_t_s service which we have injected in

SystemUI package. c_t_s uses telephony service and location service to trace gps coordinate and send it through SMS.

We have designed mechanism which listens for broadcast of SIM_STATE_CHANGE which signals our
SMSManager to when to send GPS coordinates to predefined number.

Figure 16.Our tracking rootkit flow

F. Repacking SystemUI.apk

After designing Rootkit we need to convert it into previous state there is two possibilities. First one is download

AOSP SystemUI package manually change it according to our necessity, compile it and replace it exist SystemUI.apk. we

can skip compilation part and retrieving part from our research paper if we want to follow that step. Second approach is to

as we have done in previous steps. We need to put that c_t_sService class file into SystemUI ,put service, intent filter and

permission entry in manifest and convert it back into odex file and put it with apk file in /system/app.

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue SIEICON-2017, April -2017,e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2017, All rights Reserved 10

IV. RESULT

A. Feasibility of implemented Service

Implemented service cannot be detected by user because it runs within parent process. if we type command adb shell ps

|grep SystemUI will show following result.

Figure 17.SystemUI runs under AID PID 941 and size is about 536928 bits

As we can see there is not child thread for service which start by braodcast reciever in SystemUI.Disadvantage of this

service is it tooks little bit more computaion power and ram resources.

B. Final testing and exploit research

As rule of researcher, we are continuously trying to make it better. But at this time we didn’t find any problem with this

package. Figure shown below is screenshot of received location and unauthorized person’s number from my rootkit. Here

Long:73.22477 means longitude and lat:22.22945 for latitude coordinate and pn:8200382872 is phone number of thief .we

can now check location by this coordinates via Google map.

Figure 18: Auto SMS from rootkit with long, lat and phone number of subscriber.

I. FUTUER WORK

 Less use of resources and asynchronous call in replace of continuity.

 Protocol in replace of SMS.

 More Method for Covert Channel implementation.

International Journal of Advance Engineering and Research Development (IJAERD)

Special Issue SIEICON-2017, April -2017,e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2017, All rights Reserved 11

II. CONCLUSION
Android is highly flexible and because of its open source availability every expert can find way to inject in it.By the

we have used this rootkit for good purpose. It can be implemented in any android device and cannot detect by

android user easily.

REFERENCES

[1] A New Covert Channel over Cellular Voice Channel in Smartphone,Author:- Publication & Year:-IEEE 2013

[2] Differential Power Analysis of MILENAGE Implementations in 3G/4G USIM Cards, Author:- Junrong Liu, Yu Yu,

Fran ̧cois-Xavier Standaert, Zheng Guo, Dawu Gu, Wei Sun, Yijie Ge, and Xinjun Xie, Publication & Year:- IEEE

2013

[3] Implementation of Location based Services in Android using GPS and Web Services, Author:- Manav Singhal, Anupam

Shukla, Publication & Year:- IJCSI 2012

[4] Integrated Phone Locator (IPL): Lost Mobile phone tracking and recovery designs ,Author:- Newton Lwanga,
Publication & Year:- IEEE 2014

[5] Location Based Services using Android Author:- Sandeep Kumar, Mohammed Abdul Qadeer, Archana Gupta,

Publication & Year:- IEEE 2009

[6] Mobility Tracking using GPS,WI-FI and Cell ID Author:- Xiaoli Wang, Albert Kai-sun Wong, Publication & Year:-

IEEE 2012

[7] mTracker: A Mobile Tracking Application for Pervasive Environment ,Author:- Luis Carlos Moreno Varandas , Bindol

Vaidya ,joel jose puga Coelho rodrigues, Publication & Year:- IEEE 2010

[8] Real Time andOffline GPS Tracker Using Arduino, Author:- MangeshKolaskar, Aniket Chalke, MadhuraBorkar

KedarNaik, Dr. B.K Lande, Prof VarshaSuralkar, Publication & Year:- IJIR 2016

[9] android architecture from android website: https://developer.android.com/guide/platform/index.html

[10]android analysis from virusbulletin website: https://www.virusbulletin.com/files/6014/5571/2236/SEAndroid-fig2.jpg
[11] Dissecting Android Malware: Characterization and Evolution,author: Yajin Zhou, Xuxian Jiang,2010

[12]Andorid security internals,Nikolay Elekov Publication & Year:- IJIR 2015

[13] Apk to ODEX convert website: https://forum.xda-developers.com/showthread.php?t=2092154

[14]Android Studio for development website: https://developer.android.com/studio/index.html

https://developer.android.com/guide/platform/index.html
https://www.virusbulletin.com/files/6014/5571/2236/SEAndroid-fig2.jpg
https://forum.xda-developers.com/showthread.php?t=2092154

