
International journal of Advance Engineering and Research Development (IJAERD)

Volume 1 Issue 1, February 2014 ISSN: 2348 - 4470

@IJAERD-2014 All Rights Reserved 1

Study of Recursive and Iterative Approach on Factorial and

Fibonacci Algorithm

Vatsal Shah
1
, Jayna Donga

2

1
Assist. Prof., IT Dept. , BVM Engineering College, V.V.Nagar,vatsal.shah@bvmengineering.ac.in

2
Assist. Prof., Computer Dept. ,MBICT, V.V.Nagar, jaynadonga@yahoo.com

Abstract: Algorithm is wide area for research. In part of algorithm is solved various real time

problem like job scheduling, shortest path and Eight Queen etc. For finding a solution multiple

approaches work on single problem. In this paper we work on that direction. There are two main

basic algorithm can be implemented in different nature. In this paper we study factorial and

Fibonacci algorithm solved by simple iterative approach and recursive approach. At last we

compare number of parameter like their number of operation, memory utilization and Time

complexity.

Keyword: Iterative, Recursive, Time complexity

I. INTRODUCTION

 Algorithm is collection of finite set of un ambiguous instruction that occur in sequence.

lots of approaches available in algorithm for solving a problem. We discuss basically two

approaches are iterative and recursive. Recursion is an important problem solving and

programming technique and there is no doubt that it should be covered in the first year

introductory computer science courses, in the second year data structure course, and in the third

year design and analysis of algorithms course. While the advantages of using recursion are well

taught and discussed in textbooks, we discovered that its potential pitfalls are often neglected and

never fully discussed in literature. For the purpose of our discussion, we shall divide recursive

functions into linear and branched ones
[1]

. Linear recursive functions make only one recursive

call to itself. Note that a function’s making only one recursive call to itself is not at all the same

as having the recursive call made one place in the function, since this place might be inside a

loop. It is also possible to have two places that issue a recursive call (such as both the then and

else clauses of an if statement) where only one call can actually occur. The recursion tree of a

linear recursive function has a very simple form of a chain, where each vertex has only one child.

This child corresponds to the single recursive call that occurs. Such a simple tree is easy to

comprehend, such as in the well known factorial function
[3-4]

. By reading the recursion tree from

bottom to top, we immediately obtain the iterative program for the recursive one. Thus the

transformation from linear recursion to iteration is easy, and will likely save both space and time.

However, these savings are only in the constant of linear time complexity for both recursive and

iterative solutions, and can be easily disregarded.

II. BACKGROUND THEORY

Iterative functions – are loop based imperative repetitions of a process (in contrast to recursion

which has a more declarative approach). Iterative is part of Pseudo code and it is a language

similar to a programming language used to represent algorithms. The main difference respect to

http://en.wikipedia.org/wiki/Iterative

International journal of Advance Engineering and Research Development (IJAERD)

Volume 1 Issue 1, February 2014 ISSN: 2348 - 4470

@IJAERD-2014 All Rights Reserved 2

actual programming languages is that pseudo code is not required to follow strict syntactic rules,

since it is intended to be just read by humans, not actually executed by a machine
[5]

.

Recursive function – is a function that is partially defined by itself and consists of some simple

case with a known answer. A recursive procedure is a procedure that invokes itself. Also a set of

procedures is called recursive if they invoke themselves in a circle, e.g., procedure p1 invokes

procedure p2, procedure p2 invokes procedure p3 and procedure p3 invokes procedure p1. A

recursive algorithm is an algorithm that contains recursive procedures or recursive sets of

procedures
[7]

. Recursive algorithms have the advantage that often they are easy to design and are

closer to natural mathematical definitions Example: Fibonacci number sequence, factorial

function, quick sort and more. Some of the algorithms/functions can be represented in an

iterative way and some may not.

The particular recursive algorithm for calculation Fibonacci series is less efficient. Consider the

following situation of finding fib(4) through the recursive algorithm

 int fib(n) :

 if(n==0 || n==1)

 return n;

 else

 return fib(n-1) + fib(n-2)

Now when the above algorithm executes for n=4

 fib(4)

 fib(3) fib(2)

 fib(2) fib(1) fib(1) fib(0)

 fib(1) fib(0)

It's a tree. It says that for calculating fib(4) you need to calculate fib(3) and fib(2) and so on.

Notice that even for a small value of 4, fib(2) is calculated twice and fib(1) is calculated thrice.

This number of additions grows for large numbers.

There is a conjecture that the number of additions required for calculating fib(n) is

 fib(n+1) -1

So this duplication is the one which is the cause of reduced performance in this particular

algorithm.

The iterative algorithm for Fibonacci series is considerably faster since it does not involve

calculating the redundant things.

It may not be the same case for all the algorithms though.

III. IMPLEMENTATION AND RESULT ANALYSIS

http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Ackermann_function

International journal of Advance Engineering and Research Development (IJAERD)

Volume 1 Issue 1, February 2014 ISSN: 2348 - 4470

@IJAERD-2014 All Rights Reserved 3

In implementation point of view, We can use any of language for implementation. C

programming is simple and we use for implementation of Fibonacci series and factorial using

both approaches.

Factorial algorithm

Iterative approach of factorial

Recursive approach of factorial

After implementation of factorial using both approach for taking input size starting from 10 to
100000.

N Recursive Iterative

10 334 ticks 11 ticks

100 846 ticks 23 ticks

1000 3368 ticks 110 ticks

10000 9990 ticks 975 ticks

100000 stack overflow 9767 ticks

Table 2: comparison of Iterative and recursive for factorial

The reason for the poor performance is heavy push-pop of the registers in the ill level of each

recursive call.

Fibonacci Algorithm:

Iterative approach of Fibonacci

International journal of Advance Engineering and Research Development (IJAERD)

Volume 1 Issue 1, February 2014 ISSN: 2348 - 4470

@IJAERD-2014 All Rights Reserved 4

Recursive approach of Fibonacci

After implementation of Fibonacci using both approach for taking input size starting from 5 to

100000.

N Recursive Recursive opt. Iterative

5 5 ticks 22 ticks 9 ticks

10 36 ticks 49 ticks 10 ticks

20 2315 ticks 61 ticks 10 ticks

30 180254 ticks 65 ticks 10 ticks

100 too long/stack overflow 158 ticks 11 ticks

1000 too long/stack overflow 1470 ticks 27 ticks

10000 too long/stack overflow 13873 ticks 190 ticks

100000 too long/stack overflow too long/stack overflow 3952 ticks

Table 2: comparison of Iterative and recursive for fibonacci

As before, the recursive approach is worse than iterative however, we could

apply memorization pattern (saving previous results in dictionary for quick key based access),

although this pattern isn't a match for the iterative approach (but definitely an improvement over

the simple recursion).

IV. CONCLUSION

In this paper we discuss both approaches on different algorithm so we conclude that the matrix

method of generating Fibonacci numbers is more efficient than the simple iterative algorithm,

though in order to see its benefits, you will probably have to work with numbers consisting of

hundreds of bits or more. We can directly use previous find value in to next steps. For memory

purpose iterative is more appropriate compare to recursive. For smaller numbers, the simplicity

of the iterative algorithm is preferable.

http://en.wikipedia.org/wiki/Memoization

International journal of Advance Engineering and Research Development (IJAERD)

Volume 1 Issue 1, February 2014 ISSN: 2348 - 4470

@IJAERD-2014 All Rights Reserved 5

REFERENCE

[1] F. B. Chedid and T. Mogi, “A simple iterative algorithm for the towers of Hanoi problem,” IEEE Trans. Educ.,

vol. 39, pp. 274–275, May 1996.

[2] R. L. Kruse, C. L. Tondo, and B. P. Leung, Data Structures and Program Design in C. Englewood Cliffs, NJ:

Prentice-Hall, 1997.

[3] A. B. Tucker, A. P. Bernat, W. J. Bradley, R. B. Cupper, and G. W. Scragg, Fundamentals of Computing I. New

York: McGraw-Hill, 1994.

[4] T. L. Naps and D. W. Nance, Introduction to Computer Science: Programming, Problem Solving, and Data

Structures. St. Paul, MN:West, 1995.

[5] E. B. K offman, Pascal. Reading, MA: Addison-Wesley, 1995.

[6] T. A. Standish, Data Structures, Algorithms, and Software Principles. Reading, MA: Addison-Wesley, 1994.

[7] E. B. Koffman and B. R. Maxim, Software Design and Data Structures in Turbo Pascal. Reading, MA:

Addison-Wesley, 1994.

