

International Journal of Advance Engineering and Research

Development

Technophilia-2018.

Volume 5, Special Issue 04, Feb.-2018 (UGC Approved)

Use of glass powder in concrete to improve Flexural strength

Waykar Rajesh S.¹, Chavan Sanket N.², Yendhe Rushikesh C.³, Pawale Tushar T.⁴, Sonawane Pradip B.⁵

¹Department of Civil engineering, Jaihind Polytechnic, Kuran

² Department of Civil engineering, Jaihind Polytechnic, Kuran

³ Department of Civil engineering, Jaihind Polytechnic, Kuran

⁴ Department of Civil engineering, Jaihind Polytechnic, Kuran

5Lecturer, Department of Civil engineering, Jaihind Polytechnic, Kuran

Abstract —The global warming is caused by the emission of green house gases, such as CO2, to the atmosphere. Among the greenhouse gases, CO2 contributes about 65% of global warming. The global cement industry contributes about 7% of greenhouse gas emission to the earth's atmosphere. Consequently efforts have been made in the concrete industry to use waste materials as partial replacement of coarse or fine aggregates and cement. Waste glass is one materials when ground to a very fine powder shows pozzolanic properties which can be used as a partial replacement for cement in concrete. In this paper, an attempt has been made to find out the strength of concrete containing waste glass powder as a partial replacement of compressive strength and flexural strength at the age of 7, 28 and 90 days and compared with those of conventional concrete. Results showed that replacement of 15% cement by glass powder was found to have higher strength.

Mixtures containing GLP also performed satisfactorily with respect to drying shrinkage and alkali reactivity, and there were indications that GLP reduces the chloride ion penetrability of the concrete, thereby reducing the risk of chloride induced corrosion of the steel reinforcement in concrete. The results demonstrated that GLP can be incorporated into 40 MPa concrete at dosage rates of 20–30% to replace cement without harmful effects. The use of GLP provides for considerable value-added utilisation of waste glass in concrete and significant reductions in the production of green house gases by the cement industry

Keywords-component; Concrete, Glass Powder, Strength, Alkalinity test, Global warming.

I. INTRODUCTION

Concrete is one of the world's most used construction material due to its versatility, durability and economy. India uses about 7.3 million cubic meters of ready-mixed concrete each year. It finds application in highways, streets, bridges, highrise buildings, dams etc.Green house gas like CO₂ leads to global warming and it contributes to about 65% of global warming. The global cement industry emits about 7% of green house gas to the atmosphere. To reduce this environmental impact alternative binders are introduced to make concrete. Glass is an amorphous material with high silica content making it potentially pozzolanic when particle size is less than 75µm. The main problem in using crushed glass as aggregate in Portland cement concrete are expansion and cracking caused by the glass aggregate due to alkali silica reaction. Due to its silica content ground glass is considered a pozzolanic material and as such can exhibit properties similar to other pozzolanic material. In this study, finely powdered waste glasses are used as a partial replacement of cement in concrete and compared it with conventional concrete. Concrete mixtures were prepared with different proportions of glass powder ranging from 5 to 40% with an increment of 5% and tested for compressive strength after 7, 28 and 90 days of curing. Selected properties of the glass powder modified mixtures are compared with the properties of conventional concrete.

II. MATERIAL AND METHODS

- **1. Cement:** The cement used in this study was 53 grade Ordinary Portland Cement (OPC) confirming to IS 8112-1989.
- **2. Fine aggregate:** Locally available sand confirming to zone II with specific gravity 2.62 was used. The testing of sand was done as per Indian Standard Specification IS: 383-1970
- **3. Coarse aggregate:** Coarse aggregate used was 20mm and down size and specific gravity 2.93. Testing was done as per Indian Standard Specification IS: 383-1970.
- **4. Glass:** Waste glass available locally was collected and made into glass powder. Glass waste is very hard material. Before adding glass powder in the concrete it has to be powdered to desired size.

International Journal of Advance Engineering and Research Development (IJAERD) Technophilia-2018.,Volume 5, Special Issue 04, Feb.-2018.

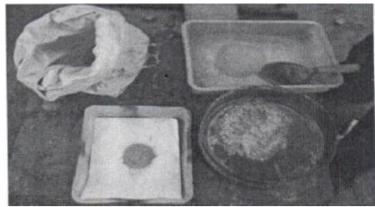


Figure 1 Glass powder

A. Chemical composition

Table 1. Chemical composition of cementing materials					
Composition (% by mass)/ property	Cement	Glass powder			
Silica (SiO2)	20.2	72.5			
Alumina (Al2O3)	4.7	0.4			
Iron oxide (Fe2O3)	3.0	0.2			
Calcium oxide (CaO)	61.9	9.7			
Magnesium oxide (MgO)	2.6	3.3			
Sodium oxide (Na2O)	0.19	13.7			
Potassium oxide (K2O)	0.82	0.1			
Sulphur trioxide (SO3)	3.9	-			
Unit weight,Kg/m3	3150	2579			
Specific gravity	3.15	2.58			

B. Mix design: The concrete mix without glass powder was proportioned as per Indian Standard Specifications IS: 10262-1982. Mix design was done for M20 grade of concrete. The mixture was prepared with water to cement ratio of 0.5. The mix proportion of materials is 1:2.35:4.47 as per IS 10262-2009. Then natural fine aggregate was used. Four different mixes (M1, M2, M3, M4) were prepared at cement replacement levels of 0%, 5%, 10%, and 15% in concrete. **C. Casting and Testing:** The 150 mm concrete cubes were cast for compressive strength and 150 x150x 700 mm beams

were cast for flexural strength according to the mix proportion and by replacing cement with glass powder (GP) in different proportion.

1. Strength test: Using a compression testing machine (CTM) of capacity 2000KN in accordance with the provisions of the Indian Standard specification IS: 516-1959, strength of specimens were tested at 7, 28 and 90 days.

2. Workability test: Workability is the property of freshly mixed concrete that determines the ease with which it can be properly mixed, placed, consolidated and finished without segregation. Workability depends on water content, aggregate cementitious content and age and can be modified by adding chemical admixtures. The workability of fresh concrete was measured by means of the conventional slump test as per IS: 1199-1989. Before the fresh concrete was cast into moulds, the slump value of the fresh concrete was measured using slump cone.

III.TEST RESULTS

Test results are presented graphically and in tubular forms and have been discussed under different categories.

A. Workability

Table 2 shows the results of workability of concrete with cement replacement by glass powder in various percentages ranging from 0% to 15% in increments of 5% (0%, 5%, 10%, 15%)

Table 2. Overall result of slump of concrete						
Mix Designation	Percentage replacement of cement by glass powder	Slump (mm)				
M1	0(Ref.mix)	95				
M2	05	89				
M3	10	86				
M4	15	52				

International Journal of Advance Engineering and Research Development (IJAERD) Technophilia-2018.,Volume 5, Special Issue 04, Feb.-2018.

B. Strength tests:

1. Compressive Strength

The table gives the results of test conducted on hardened concrete with 0-15% glass powder for 3, 7 and 28 days. From table 3, the results shows that the compressive strength increases with increasing curing time.

	Table 3. Overall results of development of compressive strength in concrete with age											
	0 % GP			5 % GP			10 % GP			15 % GP		
Sr.	3 Day	7 Day	28 Day	3 Day	7 Day	28 Day	3 Day	7 Day	28 Day	3 Day	7 Day	28 Day
1	7.21	15.18	22.18	8.22	16.21	23.16	8.91	17.21	24.21	10.25	19.23	28.26
2	7.48	15.89	22.87	8.63	16.21	22.89	9.26	17.35	24.52	10.11	19.89	30.12
3	7.89	14.85	22.56	8.11	15.91	23.32	9.03	17.35	26.21	10.89	18.88	31.88

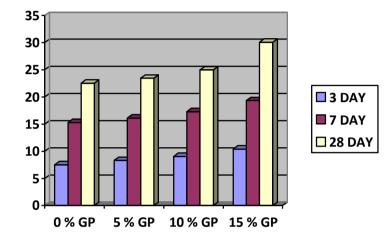


Fig.1. Variation of comp strength of concrete with cement replacement by glass powder **2. Flexural Strength**

Table 4. Overall results of development of flexural strength in concrete with age.									
	0 % GP		5 % GP		10 % GP		15 % GP		
	P in kN	strength							
1	65	13.48	71	14.72	76	15.76	85	17.62	
2	67	13.89	69	14.31	78	16.17	89	18.45	
3	63	13.06	73	15.14	78	16.17	82	17	

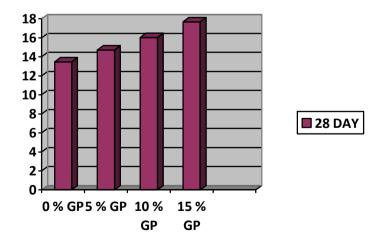


Fig.2. Variation of flexural strength of concrete with cement replacement by glass powder

IV DISCUSSION ON TEST RESULTS

• Workability As the glass content increases (i.e. cement content decreased) workability decreases. As there is a reduction in fineness modulus of cementatious material, quantity of cement paste available is less for providing lubricating effect per unit surface area of aggregate. Therefore, there is a restrain on the mobility.

International Journal of Advance Engineering and Research Development (IJAERD) Technophilia-2018.,Volume 5, Special Issue 04, Feb.-2018.

• Strength

As the percentage of replacement of cement with glass powder increases strength increases. The highest percentage increase in the compressive strength was about 33% and flexural strength was about 31% at15% replacement level. The increase in strength up to 20% replacement of cement by glass powder may be due to the pozzolanic reaction of glass powder due to high silica content. Also it effectively fills the voids and gives a dense concrete microstructure. However, beyond 20%, the dilution effect takes over and the strength starts to drop. Thus it can be concluded that 20% was the optimum level for replacement of cement with glass powder.

V. CONCLUSIONS

Based on experimental observations, the following conclusions are drawn:

- As the percentage of glass powder increases the workability decreases. Use of super plasticizer was found to be necessary to maintain workability with restricted water cement ratio.
- Compressive strength increases with increase in percentage of glass powder upto 33% replacement by incerment of glass powder of 15%
- Flexural strength also increases with increase in percentage of glass powder upto 31% replacement by incerment of glass powder of 15%
- Considering the strength criteria, the replacement of cement by glass powder is feasible. Therefore we can conclude that the utilization of waste glass powder in concrete as cement replacement is possible.
- Very finely ground glass has been shown to be excellent filler and may have sufficient pozzolonic properties to serve as partial cement replacement, the effect of ASR appear to be reduced with finer glass particles, with replacement level.

REFERENCES

- [1]. Bajad, M. N. and Modhera, C.D. (2010). "Experimental Investigations in Developing Concrete Containing Waste Glass Powder As Pozzolana.", *Journal of information, knowledge and research in civil engineering*, 1(1), 32-37.
- [2]. Bajad, M. N., Modhera, C.D. and Desai, A. K. (2011). "Effect of glass on strength of concrete subjected to sulphate attack.", *International Journal of Civil Engineering Research and Development*, 1(2), 1-13.
- [3]. Dhanaraj, M. P. and Keshav, K. S.(2013). "Experimental Investigation Of Waste Glass Powder as Partial Replacement of Cement in Concrete.", *International Journal Of Advanced Technology In Civil Engineering*, 2(1), 2231–5721.
- [4]. Meenakshi, S.S. and Ilangovan, R. (2011). "Performance of copper slag and ferrous slag as partial replacement of sand in concrete.", *International Journal of Civil and Structural Engineering*, 1(4), 918-926.
- [5]. Nathan, S. and Narayanan, N., (2008). "Influence of a fine glass powder on cement hydration: comparison to fly ash and modeling the degree of hydration," *Cement and Concrete Research*, 38, 429-436.
- [6]. Vijayakumar, G., Vishaliny, H. and Govindarajulu, D. (2013). "Studies on Glass Powder as Partial Replacement of Cement in Concrete Production.", *International Journal of Emerging Technology and Advanced Engineering*, 3(2), 153-157.
- [7]. Shetty M.S., (2006). "Concrete Technology Theory and Practice" S.Chand and Company Ltd., New Delhi. Web References:http://www.ijetae.com
- [8]. IS 383(1970) Indian Standard Specification For Coarse And Fine Aggregates From Natural Sources For Concrete.
- [9]. IS 516(1959) Methods of test for strength of concrete, Bureau of Indian Standards, New Delhi.
- [10]. IS 10262(2007), Indian Standard Concrete Mix Proportioning- Guidelines.
- [11]. IS 1199(1959), Methods of sampling and analysis of concrete, Bureau of Indian Standards, New Delhi.