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Introduction: The notion of 2-metric was introduced by Gahler  in 1963 as an abstract generalization of the concept of area 

function for Euclidean triangles. The concept of 2-metric attracted the attention of many researchers. Many authors like Iseki, 

Khan, Rhoades, Lal and Singh etc. probed deeply into this area and established several fixed point theorems in 2- metric 

space setting as generalizations or extensions to the metric fixed point theorems. Several fixed point theorems appeared in 2-

metric spaces analogous to the fixed point theorems in metric space setting. In this present work we generalize the fixed point 

theorems that are proved by pal and maiti[4]. In 1977 Rhoades [6] proved some fixed point theorems by using contractive 

type mappings for 2-metric spaces.    

1. Preliminaries 

            In this section, we present some basic definitions which are needed for the further study of this paper 

 

 1.1  Definition:    Let (X,d) be a 2 –metric space. A mapping T: X→X is  said to be        

         Contractive if for all x,y,a in X 

                                     d(Tx, Ty, a)    <     d(x, y, a) 

  1.2  Definition:    A  2-metric on a non-empty set  X is a function  d : X
3  R ,  

     satisfying the following properties. 

 

(a)     d( x, y,  z ) = 0 , if at least two of  x,y,z   are equal 

 

(b)    for each pair of distinct points x , y in X there exists a point  z  X  such that   

               d (x, y, z)   0 

(c)    d( x, y,  z )  = d( x, z , y ) = d(  y,  z , x ) for all x, y, z in X 

 

(d)   d( x, y,  z )    d( x, y,  u ) + d( x, u,  y )  +  d( u,  y,  z ) for all x, y, z and u  in X 

 

then d is called a 2-metric on X and the pair (X ,d)  is called a 2-metric space 

 

 

1.3  Remark:    A Contractive mapping of a complete 2 –metric space (X,d)  into  itself  need    

     not have a fixed  point.     

 

 1.4  Example:     Let  x = {  x ∈ R  :  x  ≥ 1  }     with  2 –metric  defined  as  

                               

                           d(x,y,z) = min  { | x – y |,  | y - z |, | z – x | }    

        

         Let   F(x) = x+
1

𝑋
 , then  F(1) = 2, F(2) = 2.5,F(3) =3.33  and so on. 
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                         d(F(1), F(2), F(3)) = d(2, 2.5, 3) = ½ 

                         d(1,2,3)  =  1 

          But , ½ <1 , so  F  is  a  Contractive but  it  has no fixed  point 

2.  Generalized fixed point theorem 

2.1 Theorem:  :  Let  (X,d) be a complete  2–metric  space  and  S, T : X → X 

       Such that for all x, y, a in X and positive integers p,q, (p + q) 

      d(S
p
(x), T

q
(y), a) < max. { d(x, y, a), d(x, S

p
(x), a),d(y, T

q
(y), a) 

                                             ½[ d(x, T
q
(y), a) + d(y, S

p
(x), a)]  

      Then  S and  T  have a unique common fixed point  

Proof :     Let for any arbitrary point x0 ∈ X, { 𝑥𝑛  } be  a Cauchy sequence  defined as 

X2n+1 = S n

p x2   ,    X2n  = T 12 n

q x   , n = 0,1,2,………………. 

                     Then from given condition  

                         d2n = d{x2n, x2n+1, a) = d(S n

p x2  T 12 n

q x , a) 

                                                              < max {d(x2n-1 ,x2n,a), d(x2n, S n

p x2 ,a), d(x2n-1, T 12 n

q x ,a) 

                                                                                      1/2[d(x2n, T 12 n

q x ,a) + d(x2n-1, S n

p x2 ,a)] } 

                            i.e., d(x2n, x2n+1, a)  < d(x2n-1, x2n, a) 

                         d2n+1 = d(x2n+1,x2n+2,a) = d(S n

p x2 , T 12 n

q x , a) 

                                                                 < max.d(x2n,x2n+1,a),d(x2n, S n

p x2 ,a),d(x2n+1, T 12 n

q x ,a),  

                                                                                  ½[d(x2n, T 12 n

q x ,a) + d(x2n+1, S n

p x2 ,a)] }                       

                       i.e. , d(x2n+1, x2n+2, a) < d(x2n, x2n+1, a) <d(x2n-1,x2n, a),………d(x0, x1, a) 

      Thus d2n+1 < d2n < …………….< d0.   so the sequence  { d2n } is monotone decreasing           

                  and bounded also 

         Thus  d2n →1 as n→∞. As  X is compact, there exists a cluster point u in  {𝑥𝑛  }  

          And so there exists a subsequence { 𝑥2𝑛  } → u  as  n→ ∞. 

          Also  𝑥2𝑛+1  = S n

p x2   → S
p

u and   

           𝑥2𝑛+2   = T 12 n

q x      =  T n

pq xS 2  → T
q

S
p

u  when  n→∞ . 

       Thus we get 

         1  =     lim
n

𝑑(𝑥2𝑛 , 𝑥2𝑛+1, 𝑎) = lim
n

𝑑(𝑥2𝑛 , S n

p x2 , 𝑎) = d(u, S
p

u, a)    

         1  =    lim
n

𝑑 𝑥2𝑛+1, 𝑥2𝑛+2 , 𝑎   =    lim
n

 𝑑(S n

p x2 , T 12 n

q x  , 𝑎) 

                                                          =   lim
n

  𝑑  S n

p x2 , T n

pq xS 2  , 𝑎      

                                                          =    d(S
p

u, T
q

S
p

u, a) 

         Suppose that    u  ≠  S
p

u , then 

          d(u,S
p

u, a) < d(u, S
p

u, 𝑥2𝑛 ) + d(u, 𝑥2𝑛 , a) + d(𝑥2𝑛 , S
p

u, a) 

                              =  d(u, S
p

u, 𝑥2𝑛 ) + d(u,  𝑥2𝑛 ,  a) +d(T
q

x2n-1, S
p

u, a) 

                     < d(u, S
p

u, 𝑥2𝑛 ) + d(u, x2n, a) + max { d(u, x2n-1, a), d(u, S
p

u, a),                                                                                         

                                        d(x2n-1, T
q

x2n-1, a), 
2

1
[d(u, T

q
x2n-1, a) + d(x2n-1, S

p
u, a)] } 

                               = d(u, S
p

u, 𝑥2𝑛 ) + d(u, x2n, a) + max {d(u, x2n-1, a),d(u, S
p

u, a), 

                                                   d(x2n-1 , x2n, a) , 
2

1
[ d(u, x2n,a) + d(x2n-1, S

p
u, a)] } 

          When n →∞ 

           d(u , S
p

u , a) < d(u, S
p

u , a), which is impossible.Thus S
p

u, = u. 

     Similarly we can show that T
q

u = u.  
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     Then u is the common fixed point of   S
p

and  T
q

. 

     Next we show that u is the only common fixed point of     S
p

and  T
q

. 

     If possible let 𝑢∗  ≠  u  is a another common fixed point of  S
p

and  T
q

.  

    Then S
p

(u) =T
q

(u) = u*. 

     Hence  d(u,u*,a) = d(S
p

u,T
q

u*,a)  <    max.{ d(u, u*, a),d(u, S
p

u, a),d(u*, T
q

u*, a),  

                                                                   
2

1
 [ d(u, T

q
u*, a) + d(u*, S

p
u, a)] } 

     d(u,u*,a)  <  d(u,u*,a)  which is a controdiction     

    Thus  u = u*. 

   Hence u is the unique common fixed point of  S
p

and T
q

.  

If we put  p = q = 1 then  u is a unique common fixed point of  S and T. 

Remark: If we put  S = T  and p = q = 1Then we get an  analogee of pal and Maiti with condition (d)   [ 4 ]  in 2 –metric 

space. 
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