

International Journal of Advance Engineering and Research Development

ISSN(O): 2348-4470

p-ISSN(P): 2348-6406

Volume 2, Issue 4, April -2015

Load Frequency Control in deregulated environment of an interconnected power system with multi source generation using Superconducting Magnetic Energy Storage device

¹S.Jennathu Beevi, ²Richa , ³Dr.R.Jayashree

1 Assistant Professor/EEE Department B.S.Abdur Rahman University Vandalur, Chennai, Tamil Nadu 2 M.Tech Power System Engineering B.S.Abdur Rahman University Vandalur, Chennai, Tamil Nadu 3Professor/EEE Department B.S.Abdur Rahman University Vandalur, Chennai, Tamil Nadu

Abstract—In this paper, analysis of two area interconnected power system in deregulated environment considering local loads is done with thermal ,hydro and gas turbine systems using SMES in area 2. The effect of SMES in improving the system damping is studied. Dynamic response of frequency deviation and tie line power deviations is obtained with different load disturbances in each area and comparison is done with and without considering SMES. It has been observed that the oscillations in frequency and tie line power have been damped out effectively and settling time is also reduced.

Keywords—Load Frequency control(LFC), Superconducting Magnetic Energy Storage(SMES), Integral Squared Error(ISE), Integral Absolute Error(IAE), Integral Time Absolute Error((ITAE)

I. INTRODUCTION

An electric energy system must be maintained at the desired operating level characterized by system frequency, voltage profile. The generation changes must match the load variations. In interconnected power system it is necessary to maintain the tie line power irrespective of load changes in an area. To control the frequency deviation and tie line power many control strategies have been proposed just to match the generation with load variations. Many control strategies are available in the market to control the frequency and tie line power. In this paper the use of SMES and its effect is simulated and analyzed.

Literature survey reveals that most of researchers have made an attempt to design LFC controllers using optimal control theory and applied either thermal or hydro power generations. Here the effect of SMES unit in suppressing the power system oscillations incurred by sudden fluctuations of real power load demand is studied. To reduce the oscillations and to improve the stability margin the energy storage system has following characteristics a)They should be continuously controllable. b)They should be able to absorb or release sudden excess or scarcity of power due to load fluctuations. c) The rise time and settling time of the resultant response should be small.

Here study is done for LFC in deregulated environment of two area system considering local loads in each area. The interconnected two area system has the combination of thermal, hydro and gas turbine system with SMES connected in area 2.

II. SUPER CONDUCTING MAGNETIC ENERGY STORAGE

A SMES is a dc current device that stores energy in the magnetic field. From a circuit point of view, the essential elements of SMES unit are (a) an inductor coil made up of superconducting wire(b) a cryogenic system with its liquid helium refrigerator to maintain the super conducting material at cryogenic temperature (c) power conversion system(PCS) which includes 12 pulse converter as shown in Fig. 1. The superconducting coil can be charged to a set value (which is less than full charge)from utility grid during normal operation.

The DC magnet coil is connected to the AC grid through a power conversion system, which includes an inverter/rectifier. The coil is maintained at an extremely low temperature by immersion in a bath of liquid Helium.

When there is sudden increase in the demand, the stored energy is almost immediately released through the power conversion system to the grid.

As the governor and other control mechanisms start working to set the power system to the new equilibrium condition, the coil charges back to its initial value.

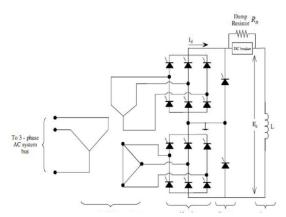
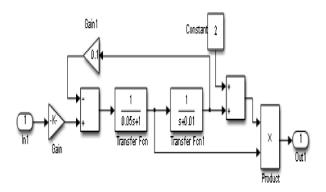



Fig. 1:SMES Circuit point of view

The matlab simulink representation of SMES is shown in Fig. 2.

III POWER SYSTEM MODEL

The detailed transfer function block diagram of two area interconnected system with diverse sources of electric power generation namely thermal, hydro and gas is show in Fig 3. The uncontrolled two area power system has generation sources of hydro in area 1 and combination of thermal and gas sources in area 2. The SMES unit is incorporated in area 2. The small disturbances of 5% is given in area 2 and IAE, ISE, ITAE has been calculated for different perturbations of load disturbances.

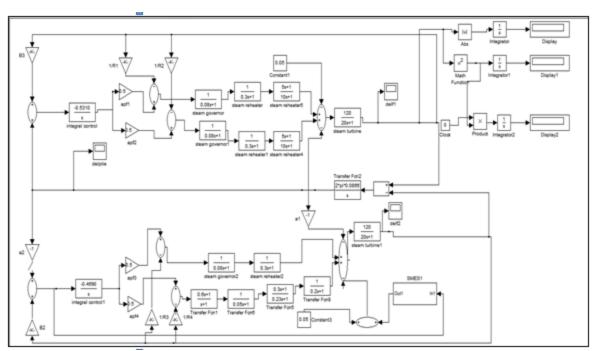


Fig 3:Simulink model of multi source two area power system with SMES

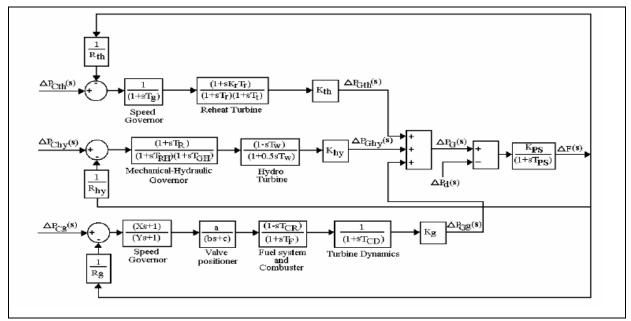


Fig 4:Transfer function block diagram of power generations of thermal, hydro and Gas sources

IV SIMULATION RESULT

The two area power system is considered for the simulation and quantitative comparison is done for different load disturbances by calculating ISE, IAE, ITAE.

Case 1:

For step load disturbance of 5% in area 2

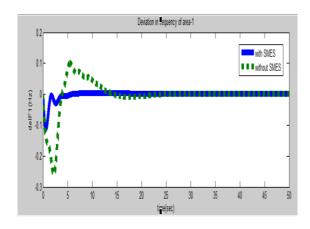


Fig 5: Response of change in frequency in area 1

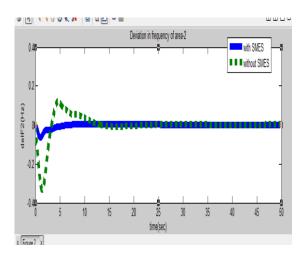


Fig 6:Response of change in frequency in area 2

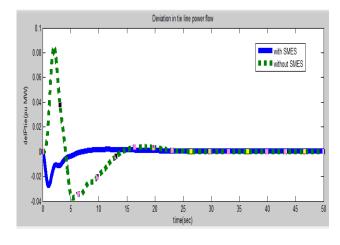


Fig 7: Response of change in tie line power exchange between area1 and area2

Table 1: Comparison of settling time and error values

		With	SMES		Without S MES				
	Setting Time (Sec)	IAE	ISE	ITAE	Setting Time (Sec)	IAE	ISE	ITAE	
ΔF1	10	0.1957	0.00979	0.009554	24	0.2479	0.01267	0.01557	
ΔF2	10	0.1941	0.005659	0.0103	24	0.2454	0.0113	0.0157	
ΔP_{tie}	10	0.08702	0.001017	0.001952	24	0.2552	6.716 e-005	0.002145	

Case 2: For step load disturbance of 10% in area 2

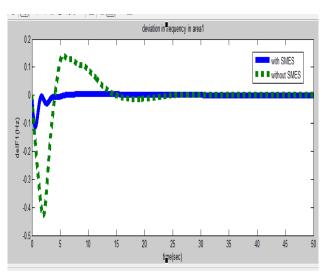


Fig 8: Response of change in frequency in area 1

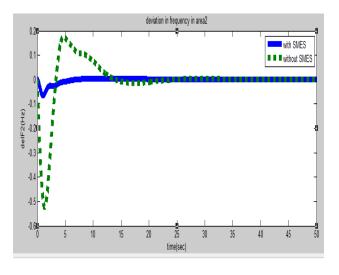


Fig 9: Response of change in frequency in area 2

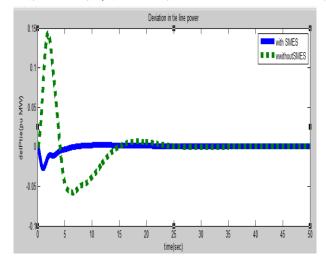
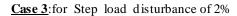
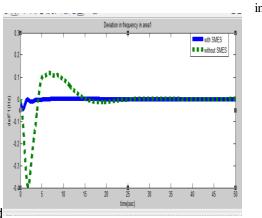




Fig 10: Response of change in tieline power exchange between area 1 and area 2

Table 2: Comparison of settling time and error values

		With	SMES	Without SMES				
	Set tin g Ti me (Se c)	IA E	ISE	ITA E	Setti ng Tim e (Sec	IA E	IS E	IT A E
Δ F1	11	0.2 048	0.00 9828	0.01	25	0.3 651	0. 02 45	0. 03 71 8
Δ F2	11	0.2 033	0.00 5790	0.01 09	25	0.3 658	0. 02 84	0. 03 35 3
Δ P _{ti} e	11	0.0 941 7	10.0 0101 7	0.00 2145	25	0.0 595 2	0. 00 04 67 1	0. 00 10 98

in area 1

@IJAERD-2015, All rights Reserved

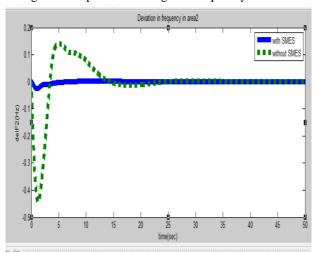


Fig 11: Response of change in frequency in area 1

Fig 12: Response of change in frequency in area 2

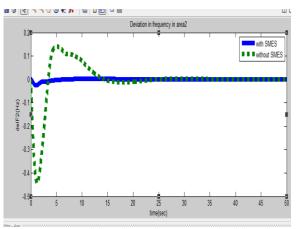


Fig 13: Response of change in tieline power exchange between area1 and area 2

With S MES Without S MES ITAE Setting IAE **ISE** Setting IAE **ISE ITAE** Time Ti me (Sec) (Sec) $\Delta F\, 1$ 11 0.095390.0016050.0023625 0.5083 0.0080.0061367 ΔF2 11 0.09504 0.000959 0.00252 25 0.5235 0.004 0.00911 58

0.00053

25

0.2809

0.001

47

0.002469

Table 3: Comparison of settling time and error values

 ΔP_{tie}

11

0.04612

0.000167

Here various case studies were done considering SMES in area 2 and without SMES with load disturbances of 5% and 10% in area 2 and 2% in area 1.It is clear that the addition of SMES in the system improves the dynamic performance of LFC and the errors (IA E, ISE, ITA E). It has been observed that the settling time and responses are considerably reduced.

V CONCLUSION

In this paper, the LFC control using SMES has been proposed for an interconnected two area, multi source power system. Settling time and gain settings of integral controllers with and without SMES are optimized. From the simulation studies it is clear that SMES can effectively damp out the oscillations and reduce the settling time.

APPENDIX

1) System Data

```
\begin{split} &T_{g1}\!=\!T_{g2}\!=\!0.08s; T_{t1}\!=\!T_{t2}\!=\!0.3s\\ &T_{p}\!=\!20s; \ K_{p}\!=\!120; \ Tr\!=\!5s;\\ &Tw\!=\!0.2s; R_{1}\!=\!R_{2}\!=\!R_{3}\!=\!2.4 Hz\ pu/MW\\ &X\!=\!0.6s; \ Y\!=\!1.0s\\ &a\!=\!1; \ b\!=\!0.05; \ c\!=\!1\\ &T_{f}\!=\!0.23s; Tcr\!=\!0.3s; \ Tcd\!=\!0.2s; \end{split}
```

2) SMES Data

$$\label{eq:L=2.56H} \begin{split} L=&2.56H\\ T_{dc}=&0.03s\\ K_{SMES}=&100kV/unit\ MW\\ K_{id}=&0.2kV/kA\\ I_{do}=&4.5kA \end{split}$$

REFERENCES

- [1] K.P Singh Parmar, S. Majhi, D.P.Kothari. "Load frequency control of a realistic power system with power generation", *Electrical Power and Energy Systems*, vol.42, pp-426-433, 2012.
- [2] Rajesh Joseph Abraham, "Automatic Generation Control: Traditional and Deregulated Environments", *Lambert Academic Publishing*, Germany, 2010.
- [3] Lalit Chandra Saikia, Shashi Kant Sahu. "Automatic generation control of a combined cycle gas turbine plant with classical controllers using Firefly Algorithm", *Electrical Power and energy systems*, vol.53, pp.27-33, 2013
- [4] Issarachai Ngamroo, A.N.Cuk Supriyadi, Sanchai Dechanupaprittha, Yasunori Mitani, "Power oscillation suppression by robust SME in power system with large wind power penetration", *Physica C*, vol.469, pp-44-51, 2009.
- [5] Rajesh Joseph Abraham, D. Das, Amit Patra, "Automatic generation control of an interconnected hydro thermal power system considering superconducting magnetic storage", *Electrical Power and Energy Systems* vol. 29, pp. 571-579, 2007.
- [6] L.M. Hajagos, G.R. Berub, "Utility experience with gas turbine testing and modelling", *IEEE power engineering society winter meeting* vol.2,no.2. Columbus, OH, USA 2001.pp.671-677.
- [7] Working group on prime mover and energy supply models for system dynamic performance studies, "Dynamic models for combined cycle plants in power system studies" *IEEE Transactions on o Power System*, vol.9, no.3, pp. 1638-1708, 1994.
- [8] Hiyama, T, "Design of decentralized load frequency regulators for interconnected power systems", *IEE Proc., Gener. Transm. Distrib.*,vol.129, no.1, pp.17- 22,1982
- [9] P. Kundur, Power System Stability and Control, McGraw-Hill Inc., New York, 1994.
- [10] Cohn, N.: "Techniques for improving the control of bulk power transfers on interconnected systems", *IEEE Trans. Power Appar. Syst.*, vol.90, no.6, pp.2409-2419, 1971
- [11] Rowen WI, "Simplified mathematical representations of heavy-duty gas turbines" *Journal of Engineering Power*, vol.105,no.4, pp. 865-873,1983.
- [12] Chown G. A. and Hartman R. C. 1998. Design and experience with a fuzzy logic controller for automatic generation control, *IEEE Trans. Power Sys.*, Vol. 13, No. 3, pp. 965-970.
- [13] K. S. S. Ramakrishna, Pawan Sharma, T. S. Bhatti "Automatic generation control of interconnected power system with diverse sources of power generation" International Journal of Engineering, Science and Technology Vol. 2, No. 5, 2010, pp. 51-65