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Abstract — In this paper, a modular Simulink model implementation of an induction motor model is described in a step -

by-step approach. The model is based on two-axis theory of revolving transformation. With the modular system, each 

block solves one of the model equations; therefore unlike black box models, all of the machine parameters are accessible 

for control and verification purposes.  

After the implementation, examples are given with the model used in different drive applications. The model takes 

power source and  load torque as input and gives speed and electromagnetic torque as output . 

 

I. INTRODUCTION 

 

The induction motor per-phase equivalent circuit discussed thus far is only valid for steady-state operation. The 

dynamic model of the machine is important for transient analysis. When the machine is placed in a feedback control loop 

for controlling its speed, the dynamics of the machine model dictate the stability of the system. The machine‟s dynamics 

are complex because the rotor windings move with respect to stato r windings, creating a transformer with time-changing 

coupling coefficient.  

  

II. AXES TRANSFORMATION 

 

Consider a symmetrical three-phase induction machine with stationary as -bs-cs axes at 2 / 3 -angle apart, as 

shown in Figure 1. Our goal is to transform the three-phase stationary reference frame (as-bs-cs) variables in to two-phase 

stationary reference frame ( ss qd  ) variables and then transform these to synchronously rotating reference frame (
ee qd 

), and vice versa. 
 

 
 

Figure 1. Stationary frame (as-bs-cs to 
ss qd  ) axes transformation 

 

Since a three-phase machine is equivalent to a two-phase machine, the variables of a three-phase machine can be 

converted into those of a two-phase machine, and vice versa. Consider a symmetrical three-phase machine with the as  

axis aligned at lagging angle    with respect to the horizontal line. The equivalent two-phase machine stator axes 
sd  

and 
sq   (also defined as ,    axes) at 90° phase difference are shown in the figure, where the 

sq   axis is aligned 

horizontally with the 
sd  axis lagging. If three phase voltages asv , bsv ,and csv  are applied in the respective stator 
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phases, the corresponding two-phase machine stator phase voltages 
s

dsv  and 
s

qsv   in Cartesian form can be derived by 

resolving the three phase voltages into the respective axes components. For convenience, it can be assumed that the 
sq

and as  axes are aligned ( = 0). In that case, the
asv ,

bsv , and 
csv  voltages can be expressed in terms of 

s
dsv  and 

s
qsv  voltages, as given in Eqs.  (1)–(3). From these equations, 

s
dsv  and 

s
qsv  expressions can be solved in terms of 

asv ,
bsv , and 

csv  as shown in Eqs.(4) and (5). The q and d  axis components can be combined into the complex polar 

form shown in Eq.(.6), where
2 /3ja e  . Similar expressions are also valid in three-phase ( crbrar ,, ) to two-phase (

rr qrdr , ) rotor phase voltages transformat ions, and vice versa. 

Assume that the 
ss qd   axes are oriented at   angle, as shown in fig.2. The voltage 

s
dsv and 

s
qsv  can be 

resolved in to as csbsas   components and can be represented in the matrix form as  

 

cos sin 1

cos( 120 ) sin( 120 ) 1

cos( 120 ) sin( 120 ) 1

s

qsas

s

bs ds

s
cs os

vv

v v

v v

 

 

 

    
   

      
          

 

 

              

The corresponding inverse relation is  

 

cos cos( 120 ) cos( 120 )
2

sin sin( 120 ) sin( 120 )
3

0.5 0.5 0.5

s

s

qs as

s

ds bs

csas

v v

v v

v v

  

  

      
     

       
          



 


                     

Where, 
s

osv is added as the sequence component, which may or may not be present. We have considered voltage as the 

variable. The current and flux linkages can be transformed by similar equations. 

It is convenient to set 0 , so that the 
sq -axis is aligned with the as axis. Ignoring the zero sequence 

components, the transformation relation can be simplified as  

 

s

as qsV V                          
1 3

2 2

s s

bs qs dsV V V  
                          

1 3

2 2

s s

cs qs dsV V V  
 

 

                                                                           

  

s

qs as bs cs as

2 1 1
V = V - V - V =V

3 3 3                                                       

1 1
-

3 3

s

ds bs csV V V   

 

Fig  2 shows the synchronously rotating 
ee qd   axes, which  rotate at synchronous speed ew with respect to the 

ss qd  axes and the angle tee   .The two-phase 
ss qd  windings are transformed into the hypothetical windings 

mounted on the 
ee qd  axes. The voltages on the 

ss qd  axes can be converted in to 
ee qd  frame as fo llows: 

hypothetical windings mounted on the 
ee qd  axes. The voltages on the 

ss qd  axes can be converted in to 

ee qd  frame as fo llows:
 
 

         
sin coss s

ds qs e ds eV V V  
 

        
cos sins s

qs qs e ds eV V V    

sin cosds qs e ds eV V V     

cos sins

qs qd e ds eV V V    

 

(1) 

(2) 

(4) (5) 

(6) (7) 

(3) 

(8) 

(9) 

(10) 

(11) 
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Figure 2.  Stationary frame to synchronously rotating frame transformation. 

 

III.  SYNCHRONOUS LY ROTATING REFRENCE FRAME- DYNAMIC MODEL      

            For the two-phase machine shown in Figure 1, we need to represent both 
s sd q and 

r rd q circuits and their 

variable in a synchronously rotating 
e ed q frame. We can write the following stator circu its equations: 

s s s
qs s qs qsv

d
R i

dt
 

                                                       

s s s
sds ds dsv

d
R i

dt
   

When these equations are converted to 
e ed q   frame, the fo llowing equations can be written: 

qs s qs qs e dsv
d

R i
dt
    

                                        
s e qsds ds dsv

d
R i

dt
                

                                                                                             

Where, all the variab les are in rotating form. The last term in Equations (2.14) and (2.15) can be defines as speed emf due 

to rotating of the axes, that is, when 0 , the equations revert to stationary form. Note that the flux linkage in  the 
ed

and 
eq  axes, respectively, with / 2 lead angle. 

 If the rotor is not moving, that is 0r , the rotor equations for a doubly-fed wound-rotor machine will be 

similar to Equations (14)-(15). 

qr r qr edr drv
d

R i
dt
    

                                           
r e qrdr dr drv

d
R i

dt
      

Where all the variables and parameters are referred to the stator, since the rotor actually moves at speed r , the qd   

axes fixed on the rotor move at a speed re    relative to the synchronously rotating frame. Therefore, in 
ee qd    

frame, the rotor equations should be modified as  

 qr r qr qr e r drv
d

R i
dt
      

                        
 - -r e r qrdr dr drv

d
R i

dt
      

Figure 2.4 shows the 
ee qd   dynamic model equivalent circu its that satisfy Equations (14) and (18)-(19). A special 

advantage of the 
ee qd   dynamic model of the machine is that all the sinusoidal variab les in stationary frame appear as 

dc quantities in synchronous frame. 

(12) (13) 

(14) (15) 

(16) (17) 

(18) (19) 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 2,Issue 3,March 2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

@IJAERD-2015, All rights Reserved                                                                    415 

 

 

 The flux linkage expressions in terms of the currents can be written from Figure 3 as fo llows 

 

( )qs qs m qs qrlsL i L i i                                        ( )qr lr qr m qs qrL i L i i                                                                                                           

 qm m qs qrL i i                                                    ( )mds ls ds ds drL i L i i     

              
( )mdr lr dr ds drL i L i i   

                                    
( )mdm ds drL i i    

                                                 

 

 

        

                (a) 
eq  Axes                                                                                   (b) 

ed  Axes  

Figure 3.  Dynamic  
ee qd    equivalent circuit of machine. 

Combin ing the above expressions with Equations (14), (15), (18) and (19), the electrical transient model in term of 

voltages and currents can be given in matrix form as  

 

( ) ( )

( ) ( )

qs

ds

qr

dr

qss s e s m e m

e s s s e m m ds

qrm e r m r r e r r

e r m m e r r r r dr

v

v

v

v

iR SL L SL L

iL R SL L SL

iSL L R SL L

L SL L R SL i

 

 

   

   

    
    
         
    
       



  

  

    

                                                                                                                                        

 Where, s  is the Laplace operator. For a singly-fed  machine, such as a cage motor, 0qr drv v  . If the speed 

r is considered constant (infinite inert ia load), the electrical dynamics of the machine are given by a fourth -order linear 

system. Then, knowing inputs ,qs dsv v  and e the currents , ,qs ds qri i i and dri can be solved from Equation (26). If 

the machine is fed  by current source, , ,qs dsi i and e  are independent. Then, the dependent variables , ,qs ds qrv v i and 

dri can be solved from Equation (26) 

The speed r  in Equation (26) cannot normally be treated as a constant. It can be related to the torques as  

m r
e L L

d d
T T J T J

dt dt

 
                                

    Where LT load torque, J  rotor inertia and m = mechanical speed. 

 Often, for compact representation, the machine model and equivalent circuit are expressed in comple x fo rm. 

Multiplying Equation (15) by - j  and adding with Equation (14) gives 

                    ( ) ( ) ( )qs s qs qs e qsds ds ds dsv
d

jv R i ji j j j
dt

                  

or 

                                              s eqds qds qds qdsv
d

R i j
dt
                                          

(20) (21) 

(22) (23) 

(24) (25) 

(26) 

(27) 

(28) 

(29) 
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  Where , ,qds qdsv i etc. are complex vectors (the superscript e has been omitted), similarly, the rotor Equations 

(18)-(19) can be combined to represent 

                                          ( )r e rqdr qdr qdr qdrv
d

R i j
dt
                      

                  

 

 

Figure 4.  Complex synchronous frame dqs  equivalent circuit. 

 

Fig 4  shows the complex equivalent circu it in rotating frame where 0qdrv  . Note that the steady-state equations can 

always be derived by substituting the time derivative components to zero. Therefore from Equations (29)-(30), the 

steady-state equations can be derived as  

 

ss s s ev R I j 
                                                                                   0 r

r e r
R

I j
S

    

                                                                     

Where the complex vectors have been substituted by the corresponding rms phasor. These equations satisfy the steady-

state equivalent circuit shown in Figure 4  if the parameter mR is neglected. 

 The development of torque by the interaction of air gap flux and rotor mmf was discussed earlier. Here it will be 

expressed in more general form, relating the  qd  components of variables. From Equation (1.6), the torque can be 

generally expressed in the vector forma as  

                       3

2 2
e rm

P
T I

 
 
 

   

Resolving the variables into 
ee qd  components, as shown in Figure 5. 

            
 3

2 2
d qe m qr m dr

P
T i i 

 
 
 

   

Several other torque expressions can be derived easily as follows:  

 3

2 2
qde m qs m ds

P
T i i 

 
 
 

    

        

 3

2 2
d s qs s ds

P
i q i 

 
 
 

   

                   3

2 2
m qs qrdr ds

P
L i i i i

 
 
 

                         

        3

2 2
dr qr r dr

P
i q i 

 
 
 

                                  

Equation (26), (27), and (37) g ives the complete model of the electro-mechanical dynamics of an induction machine in 

synchronous frame.   

 

(31) 

(30) 

(32) 

(33) 

(34) 

 
 (3.34) 

(36) 

(37) 

(38) 

(35) 
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IV      DYNAMIC MODEL STATE-SPACE EQUATIONS   

   
The dynamic machine model in state-space form is important for transient analysis, particularly  for computer 

simulation study. Although the rotating fra me model is generally  preferred, the stationary frame model can  also be used. 

The electrical variab les in the model can be chosen as fluxes, currents, or a mixture of both. In this sectio n, we will 

derive state-space equations of the machine in rotating frame with flux linkages as the main variables.  

Let‟s define the flux linkage variables as follows:  

              qs qsbF                           
qr qrbF                       dsds bF                         drdr bF                                            

                                                     Where 
b = base frequency of the machine.  

Substituting the above relation in Equations (14)-(15) and (18)-(19), we can write. 

 

1 qs e
qs s qs ds

b b

dF
V R i F

dt



 
                           

1 ds e
s qsds ds

b b

dF
V R i F

dt



 
    

  1
0 e r

r
b

qr
qr dr

b

dF
R i F

dt

 




                      

 1
0 e r

r
b

dr
dr

b

qr
dF

R i F
dt

 




                     

Where it is assumed that 0 drqr vv  

Multiplying Equation (20)-(25) by b  on both sides, the flux linkage expressions can be written as  

( )qs qs qs m qs qrb lsF X i X i i                                       

( )qr qr qr m qs qrb lsF X i X i i                                       

( )qm qm m qs qrbF X i i                                                 

( )mds b ds ls ds ds drF X i X i i                                       

( )mdr b dr lr dr ds drF X i X i i      

                                                      ( )mdm b dm ds drF X i i                                                 

 

where lrblrlsbls LXLX   ,  and mbm LX  , or 

 

qs qs qmlsF X i F                                                         

qr qr qmlrF X i F                                                         

ds ls ds dmF X i F                                                        

dr lr dr dmF X i F                              

                 
From Equations (53)-(56), the currents can be expressed in terms of the flux linkages as  

qs qm
qs

ls

F F
i

X


                                                             

qr qm
qr

lr

F F
i

X


                                                             

ds dm
ds

ls

F F
i

X


                                                         

(39) (40) (41) (42) 

(43) 

(44) 

(45) 

(46) 

(48) 

(49) 

(50) 

(51) 

(52) 

(47) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 
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dr dm
dr

lr

F F
i

X


                                                            

Substituting equation (58)-(59) in (53)-(54), respectively, the qmF  expression is given as  

   qs qm qr qm
qm m

ls lr

F F F F
F X

X X

 
 
 
 

 
 

 

or  

ml ml
qm qs qr

ls lr

X X
F F F

X X
   

where 

1 1 1

1

m ls lr

ml

X X X

X
 

  
 


 

Similar derivation can be made fo r dmF  as follows: 

ml ml
dm ds dr

ls lr

X X
F F F

X X
   

Substituting the current Equations (57)-(60) in to voltage Equations (43)-(46)  

 

  1 qss e
qs qs qm ds

ls b b

dFR
V F F F

X dt



 
     

 

 
1s ds e

qsds ds dm
ls b b

dFR
V F F F

X dt



 
                  

            
 1

0
qr e rr

qr qm dr
lr b b

dFR
F F F

X dt

 

 


     

 
 1

0
e rdrr

dr dm qr
lr b b

dFR
F F F

X dt

 

 



    

which can be expressed in state-space form as  

 

 qs e s
qs qs qmb ds

b ls

dF R
v F F F

dt X






 
 
 

     

 ds e s
qsb ds ds dm

b ls

dF R
v F F F

dt X






 
 
 

     

      
 qr e r r

qr qmb dr
b lr

dF R
F F F

dt X

 




 
 

  


    

        
 e rdr r

qrb dr dm
b lr

dF R
F F F

dt X

 




 
  
  


    

Finally form Equation (36), 

 13

2 2
ds qs

b
e qs ds

P
T F i F i



 
 
 

   

      

Equations (69)-(73), along with Equation (27), describe the complete model in  state-space form where ,,, qrdsqs FFF  

and drF  are the state variables. 

 

 

 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 
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V      SIMULINK INDUCTION MACHINE MODEL   

 

The inputs of a squirrel cage induction mach ine are the three-phase voltages, their fundamental frequency, and 

the load torque. The outputs, on the other hand, are the three phase currents, the electrical torque, and the rotor speed. 

The d-q model requires that all the three-phase variab les have to be transformed  to the two-phase synchronously rotating 

frame. Consequently, the induction machine model will have blocks transforming the three -phase voltages to the d-q 

frame and the d-q currents back to three-phase. The induction machine model implemented is shown in Fig. 5 

 It consists of five major b locks:  

 The o-n conversion  

 abc-syn conversion  

 syn-abc conversion  

 Unit vector calcu lation, and  

 The induction machine d-q model blocks.  

The following subsections will exp lain each block.  
 

[A] O-N Conversion Block  

This block is required for an isolated neutral system, otherwise it can be bypassed. The transformat ion done by 

this block can be represented as follows: 

 

 
Figure 5.  The complete induction machine simulink model 

 

2 1 1
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This is implemented in Simulink by passing the input voltages through a Simulink "Matrix Gain" block, which contains 

the above transformation matrix.  

 

 O-N Conversion simulink block sub-system: 

 
Figure 6.   O-N conversion simulink block sub-system. 

 

 

(74) 
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 O-N Conversion simulink block :  

 

Figure 7.    O-N conversion simulink block.  

 

[B] Unit Vector Block Calculation  

Unit vectors cos e  and sin e   are used in vector rotation blocks, "abc-syn conversion block"  and  "syn-abc 

conversion block".  The angle  e is calculated  direct ly  by  integrating the frequency of the input three-phase voltages,

e  . 

 dte e    

 

 The unit vectors are obtained simply by taking the sine and cosine of e  . This block is also where the in itial  

rotor  position  can be  inserted, if  needed, by  adding an init ial condition to the Simulink "Integrator" block.  

 

 e  calculation  simulink block: 

 
Figure 8.  θe Calculation simulink block. 

 

 sin e  and cos e [ Unit Vector] calculation simulink block : 

 

                  
Figure 9.  Unit vector simulink block. 

 

[C]  abc-syn conversion block 

 To convert three-phase voltages to voltages in the two-phase synchronously rotating frame, they are first 

converted to two-phase stationary frame using (76) and then from the stationary frame to the synchronous ly rotating 

frame using Eqs. (77) 

 

1 0 0

1 1
0

3 3

Vs anVqs
Vs bnV

ds Vcn

                     

  

 

(75) 

(76) 
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cos sin

sin cos

s sV V Vqs qs e eds
s s eV V Vqs eds ds

 

 

 

 

 

 

where the superscript "s" refers to stationary frame.  

 

Equation (76) is implemented similar to (74) because it is a simple matrix transformation. Equation (77), however, 

contains the unit vectors; therefore, a simple matrix transformation cannot be used. Instead, vqs and vds are calculated 

using basic Simulink "Sum" and "Product" blocks. 

 abc-syn conversion  simulink block and simulink block sub-system & abc-syn-2 conversion  simulink 

block sub-system 

 
            Figure 10.  abc-sys conversion simulink block.         Figure 11.   abc-syn conversion simulink block sub-system. 

 abc-syn conversion  simulink block  

 

Figure 12.   abc-syn-2 conversion simulink block. 

 

 abc-syn-1 conversion  simulink block : 

 

 

Figure13.  abc-syn-1 conversion simulink block. 

[D]  syn-abc conversion block 

(77) 
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This block does the opposite of the abc-syn conversion block for the current variables using (78) and (79) 

following the same implementation techniques as before. 
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 syn-abc conversion simulink block  & syn-abc conversion simulink block sub-system  

 
Figure 14.  Syn-abc conversion simulink block             Figure 15.  Syn-abc conversion sub-system simulink block.  

 

 

 syn-abc-1 conversion simulink block  

Figure 16.   syn-abc-1 conversion simulink block.  

 

 

 syn-abc-2 conversion simulink block sub-system 

 

 
    

Figure 17.   syn-abc-2 conversion simulink block. 

 

 

(79) (78) 
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[E]. Induction machine d-q model block  

 
 Fig.18 shows the inside of this block where each equation from the induction machine model is implemented in 

a different b lock. First consider the flux linkage state equations because flux linkages are required to  calculate all the 

other variables. These equations could be implemented using Simulink "State-space" block, but to have access to each 

point of the model, implementation using discrete blocks is preferred.  

 The resulting model is modular and easy to follow. Any variable can be easily traced using the Si mulink 'Scope' 

blocks. The blocks in the first two columns calculate the flux linkages, which can be used in vector control systems in a 

flux loop. The blocks in Columns 3 calculate all the current variables, which can be used in the current loops of any 

current control system and to calculate the three-phase currents. The two blocks of Column 4, on the other hand, 

calculate the torque and the speed of the induction machine, which again can be used in torque control or speed control 

loops.  These two variables can also be used to calculate the output power of the machine.  

 
 

Figure 18.  Induction machine d-q model block.  

 

 Fdr  Matlab simulink block sub-system  & Fdr Matlab simulink block sub-system 

 

 
Figure 19.   Fdr simulink block.                                   Figure 20.  Fdr matlab simulink block sub-system. 
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  Fds Matlab simulink block  & Fds Matlab simulink block Sub-system  

 

 
                Figure 21.  Fds matlab simulink block               Figure 22 .  Fds matlab simulink block sub-system. 

 

 Fqr  Matlab simulink block sub-system & Fqr  Matlab simulink block  

 

 
                         Figure 23 . Fqr  matlab simulink block.            Figure 24.  Fqr  matlab simulink block sub-system 

 

    Fqs Matlab simulink block Sub-system & Fqs  Matlab simulink block  

 

 

 
                   Figure 25.  Fqs matlab simulink block sub-system                Figure 26.    Fqs matlab simulink block. 

 

 Fmd Matlab simulink block   & Fmd Matlab simulink block sub-system 

 

 
                 Figure 27.  Fmd matlab simulink block.                   Figure 28.  Fmd matlab simulink block sub-system. 
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 Fmq Matlab simulink block & Fmq Matlab simulink block  sub-system 

 

 
                     Figure 29. Fmq matlab simulink block.               Figure 30.  Fmq matlab simulink block sub-system. 

 

 

 Iqr Matlab simulink block  & Iqr Matlab simulink block sub-system  

 

 
                             Figure 31. Iqr matlab simulink block.                 Figure 32. Iqr matlab simulink block sub-system. 

 

 

 Iqs Matlab simulink block  & Iqs Matlab simulink block  sub-system 

 

 
Figure 33. Iqs matlab simulink block.               Figure 34. Iqs matlab simulink block sub-system. 

 

 

 Idr Matlab simulink block  & Idr Matlab simulink block sub-system 

 

 
                       Figure 35. Idr matlab simulink block.                      Figure 36.  Idr matlab simulink block sub-system. 

 

 

 Ids Matlab simulink block  & Ids Matlab simulink block sub-system 

 

 
                      Figure 37.  Ids matlab simulink block.               Figure 38.   Ids matlab simulink block sub-system. 
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 Te Matlab simulink block   & Te Matlab simulink block sub-system 

 

 
                  Figure  39. Te matlab simulink block.                        Figure 40.  Te matlab simulink block sub-system. 

 

 r  Matlab simulink block  & r  Matlab simulink block sub-system 

 

 

                   Figure 41.  r  matlab simulink block.                Figure 42 .   r  matlab simulink block sub-system. 

 

 Induction Machine Parameters values corresponding to 50 HP motor 

 

 

 
 

 
Figure 43.  Parameters of induction machine. 
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[F]   INDUCTION MACHINE D-Q S IMULATION MODEL 

 

 
 

Figure 44.  Induction machine D-Q simulink model.  

 

 

 

 

[G]  Graphical Displays: 

 

 
 

 

 



International Journal of Advance Engineering and Research Development (IJAERD)  

Volume 2,Issue 3,March 2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

@IJAERD-2014, All rights Reserved                                                                    428 

 

 

 

 
 

Figure 45.  Performance wave form of induction motor 

 

 

VI. CO NCLUSIONS 

 

 In this paper, implementation of a modular s imulink model fo r induction machine simulation has been 

introduced. Unlike most other induction machine model implementations, with  this model, the user has access to all the 

internal variables for getting an insight into the machine operation. Any machine control algorithm can be simulated in 

the Simulink environment with this model without actually using estimators. If need be, when the estimators are 

developed, they can be verified using the signals in the machine model. The ease of implementing controls with this 

model  is also demonstrated with several examples. 
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