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 Abstract - A mathematical model is a description of a system using mathematical concepts and language. The process of 

developing a mathematical model is termed mathematical modeling. Mathematical models are used in the natural 

sciences (such as physics, biology, earth science, meteorology) and engineering disciplines (such as computer science, 

artificial intelligence) as well as in the social sciences ( such as economics ,psychology, sociology, etc.) 

Physicists, engineers, statisticians operation research analysts, and economists use mathematical models most 

extensively. A model may help to explain a system and to study the effects of different components, and to make 

predictions about behavior. 

 

I. INTRODUCTION 

A mathematical model is an abstract model that uses mathematical language to describe the behavior of a system. 

Mathematical model is a representation in mathematical terms of the behavior of real devices and objects Mathematical 

models are used particularly in the natural sciences and engineering disciplines (such as physics, biology, and electrical 

engineering) but also in  the social sciences (such as economics, sociology and political science); physicists, engineers, 

computer scientists, and economists use mathematical models most extensively. Eykhoff (1974) defined a mathemat ical 

model as 'a representation of the essential aspects of an existing system (or a system to be constructed) which presents 

knowledge of that system in usable for'. Mathematical models can take many forms, including but not limited to 

dynamical systems, statistical models, differential equations, or game theoretic models. These and other types of models 

can overlap, with a given model involving a variety of abstract structures. Mathematical modeling problems  are often 

classified into black box or white box models, according to how much a prio ri informat ion is available of the system. A 

black-box model is a system of which there is no a priori informat ion availab le. A white-box model (also called glass box 

or clear box) is a system where all necessary informat ion is available.  

II. NEED OF MATHEMATICAL MODELING 

A mathemat ical model embodies a hypothesis about the study system, and lets you compare that hypothesis with data. A  

model is often most useful when it fails to fit the data, because that says that some of your ideas about the study system 

are wrong. Mathematical models and computer simulat ions are useful experimental tools for build ing and testing 

theories, assessing quantitative conjectures, answering specific questions, de termin ing sensitivities to changes in 

parameter values and estimat ing key parameters from data. A model is a representation or an abstraction of a system or a 

process. We build  models because they help us to (1) define our problems, (2) organize our thoughts, (3) understand our 

data, (4) communicate and test that understanding, and (5) make predictions. A model is therefore an intellectual tool.   

One of the most important aims for construction of models is to define the problem such that only important details 

becomes visible, while irrelevant features are neglected. A road map of the triangle area is an example of a model. If a  

motorist understands the symbols that are used in  the map, then much in formation about the region  becomes available in  

a package s mall enough to carry around in one’s pocket.. The road map is one representation of many important features 

of the region. But it omits many other features that may not be crucial. Most road maps do not contain sufficient 

informat ion to tell a motorist what is the speediest route to take between two points during the morning rush hour. The 

map is also almost useless to a door-to-door encyclopedia salesperson who wishes to find neighborhoods whose social 

and economic characteristics indicate good selling opportunities. For this purpose, a different kind of model of the reg ion 

is needed. 

III. MATHEMATICAL MODELING BACKGROUND 

A mathemat ical model of a complex phenomenon or situation has many of the advantages and limitations of other types 

of models. Some factors in the situation will be omitted while others are stressed. When constructing a mathemat ical 

system, the modeler must keep in mind the type of information he or she wishes to obtain from it. The role that 

mathematical models play in science can be illustrated by the relatively simple schematic diagram of Figure 1.  
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The scientist begins with some observations about the real world. He or she wishes to make some conclusions or 

predictions about the situation he or she has observed. One way to proceed (E) is to conduct some experiments and 

record the results. The model builder fo llows a different path. First, he or she abstracts, or translates, some of the 

essential features of the real world into a mathematical system. Then  by logical argument (L) he or she derives some 

mathematical conclusions. These conclusions are then interpreted (I) as predictions about the real world. To be useful, 

the mathemat ical system should predict conclusions about the real world that are actually observed when appropriate 

experiments are carried out. If the predictions from the model bear little resemblance to what actually occurs in the real 

world, then the model is not a good one. The modeler has not isolated the critical features of the situat ion being studied 

or the axioms misrepresent the relations among these features. On the other hand, if there is good agreement between 

what is observed and what the model predicts, then there is some reason to believe that the mathematical system does 

indeed capture correctly important aspects of the real-world situation. 

What happens quite frequently is that some of the predict ions of a mathematical model agree quite closely with observed 

events, while other predictions do not agree with the observed events.  In such a case, we might hope to modify the 

model to improve its accuracy. The incorrect predictions may suggest ways of rethinking the assumptions of the 

mathematical system. One hopes that the revised model will not only preserve the correct predict ions of the orig inal one, 

but that it will also make further correct predictions. The incorrect inferences of the revised model will lead, in turn, to 

yet another version, more sophisticated more accurate than the previous one. 

However, it  is important to keep in mind, that the goal is not to make the most precise model of the part of the world that 

is modeled, but that the model (like the road map) includes all the essential features, even if that means that some other 

features in the model do not present the reality. For example, a model of the cardiovascular system (the heart, arteries, 

and veins) could accurately present the systemic arteries and veins and then lump the pulmonary circulation into a single 

compartment. Such a compartment would never repres ent any of the subsystems correctly. 

When building mathematical models one should distinguish between the different types of models, some models 

(determin istic models) can  be derived direct ly from physical laws (e.g. Newton’s second law), while other models are 

based on empirical observations. Both types of models provide insight into the system modeled, but the type of model 

must be considered carefully. For example, very different types of models are used for pred ict the weather tomorrow and 

to determine a rockets trajectory to the moon.  

Holling (1978) has a diagram (Figure 2) that provides a simple and useful classification of problems. The horizontal axis 

represents how well we understand the problem we are trying to solve; the vertical axis represents the quality and/or 

quantity of relevant data (Figure 2). Holling divides the quadrant between the two axes into four areas, correspond ing to 

four classes of problems. 
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Area 1 is a region with good data but little understanding. This is where statistical techniques are useful; they enable one 

to analyze the data search for patterns or relat ion, construct and test hypotheses, and so on. 

Area 3 is a region  with good data and good understanding. Many problems in  engineering and the physical sciences (for 

example, the problem of computing a rockets trajectory to the moon) belong to this class of problems. This is the area 

where models are used routinely and with confidence because their effect iveness has been proved repeatedly. 

Area 2 has little in the way of supporting data but there is some understanding of the structure of the problem.  

Area 4, in this area there is little knowledge of the structure of the problem and little  data to support it.  

Unfortunately, many problems in the nonphysical sciences (especially in the bio logical sciences) belong to areas 2 and 4. 

However, recent exp losion in experimental techniques move some of these problems to areas 1 and 3. The main  

difference from the physical problems is the uncertainty and high levels of noise often found in the data. 

The modeling challenges for problems in area 2 and 4 are:  

 Decisions may have to be made despite the lack o f data and understanding. How do we make good, scientific 

decision under these circumstances 

 How do we go about improving our understanding and suggest new ways for collecting the data necessary to 

validate the modeling. Th is is an area where modeling can be used to predict new experimental settings.  

  

Models that lie in areas 2 and 4 are bound to be speculative. They will never have the respectability of models build for 

solving problems in area 3 because it is unlikely they will be sufficiently accurate of that they can ever be tested 

conclusively. In fact most models in biology cannot be tested conclusively, while we have a lot more data today that 20 

years ago there are still many types of data that could validate models, but that are unethical to measure. Models build 

this way should never be used unquestioningly or automatically. The whole p rocess of building and using these models 

has to be that much more thoughtful because we do not really understand the structure of the problem and do not have 

(and cannot easily get) supporting data. 

We therefore build models to explore the consequences of what we believe to be true. Those who have a lot of data and 

litt le understanding of their problem (area 1) gain understanding by “living with” their data, looking at it in different 

ways, and searching for patterns and relationships.  Because we have so little data in areas 2 and 4, we learn by liv ing 

with our models, by exercising them, manipulating them, questioning their relevance, and comparing their behavior with 

what we know (or think we know) about the real world. This process often forces us to reevaluate our beliefs, and that 

reevaluation in turn leads to new versions off the models. The mere act of assembling the pieces and building a model 

(however speculative the model might be) usually improves our understanding and enables us to find or use d ata we had 

not realized  were relevant. That in turn leads us to a better model.  The process is one of boot-strapping: If we begin with 

D
a
ta
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litt le data and understanding in the bottom left -hand corner of Holling’s diagram, models help us to zigzag upwards and 

to the right. Th is is a far healthier approach than one of just collecting data because we improve our understanding as we 

go along.  (Those who collect data without building models run the very real risk of d iscovering, when they eventually 

analyze their data, that they have collected the wrong data!)  

IV. THE MODELING PROCESS:  

Before starting the mathematical modeling we have to go through following principal questions and answers.  

• Why? - What are we looking fo r? Identify the need for the model.  

• Find? - What do we want to know? List the data we are seeking.  

• Given? - What do we know? Identify the available relevant data. 

• Assume? -What can we assume? Identify the circumstances that apply. 

• How? - How should we look at this model? Identify the governing Physical principles. 

• Predict? What will our model pred ict? Identify the equations that will be used, the calculations that will be made, and 

the answers that will result. 

• Valid? Are the p redictions valid? Identify  tests that can be made to validate the model, i.e ., is it  consistent with  its 

principles and assumptions? 

• Verified? Are the predict ions good? Identify tests that can be made to  verify the model, i.e ., is it  useful in terms  of the 

initial reason it was done?  

• Improve? Can we improve the model? Identify parameter values that are not adequately known, variab les that should 

have been included, and/or assumptions/restrictions that could be lifted. Implement the iterative loop thatwe can call 

“model-validate-verify-improve-predict.”  

• Use? How will we exercise the model? What will we do with the model?  

After Summarizing all the existing ideas and in order to make the ideal model a b it clearer , we could say that the main  

stages of the mathematical modeling process involve:  

• s1 = analysis of the problem (understanding the statement and recognizing the restrictions and requirements of the real 

system). 

• s2 = mathematization, which could be d ivided to formulat ion of the real situation in  such a way that it  will be ready for 

mathematical treatment and construction of the model. The former involves a deep abstracting process, in order to 

transfer from the real system to the, so called, assumed real system, where emphasis is given to certain, dominating for 

the system’s performance, variab les. 

 • s3 = solution of the model, which is achieved by proper mathematical manipulat ion. 

• s4 = validation (control) of the model, which is usually achieved by reproducing, through the model, the behavior of the 

real system under the conditions existing before the solution of the model (empirical results, special cases etc). A model 

is valid, if despite its inexactness in representing the real system, gives a reliable prediction of the system’s performance . 

 • s5 = Implementation of the final mathematical results to the real system. 
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V. SOME METHODS OF MATHEMATICAL MODELING  

 

5.1. Dimensional Homogeneity and Consistency 

There is a basic, yet very powerful idea that is central to mathematical modeling, namely, that every equation we use 

must be dimensionally  homogeneous  or dimensionally consistent. It is quite logical that every term in an energy equation 

has total dimensions of energy, and that every term in a balance of mass should have the dimensions of mass. This 

statement provides the basis for a technique called dimensional analysis 

 

5.2 Abstraction and Scaling 

An important decision in modeling is choosing an appropriate level of detail for the problem at hand, and thus knowing 

what level of detail is prescribed for the attendant model. This process is called abstraction and it typically  requires a 

thoughtful approach to identifying those phenomena on which we want to focus, that is, to answering the fundamental 

question about why a model is being sought or developed.For example, a  linear elastic spring can  be used to model more 

than just the relation between force and relative extension of a simple coiled spring, as in an old -fashioned butcher’s 

scale or an automobile spring. It can also be used tomodel the static and dynamic behavior of a tall build ing, perhaps to 

model wind loading, perhaps as part of analyzing how the building would respond to an earthquake. In these examples, 

we can use a very abstract model by subsuming various details within the parameters of that model.  

 

5.3 Conservation and Balance Principles  

When we develop mathematical models, we often start with statements that indicate that some property of an object or 

system is being conserved. For example, we could analyze the motion of a body moving on an ideal, frictionless path by 
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noting that its energy is conserved. Somet imes, as when we model the population of an  animal co lony or the volume of a 

river flow, we must balance quantities, of indiv idual animals or water volumes, that cross a defined boundary. We will 

apply balance or conservation principles to assess the effect of maintain ing or conserving levels of important physical 

properties. Conservation and balance equations are related—in fact, conservation laws are special cases of balance laws. 

 

5.4 Constructing Linear Models  

Linearity is one of the most important concepts in mathemat ical modeling. Models of devices or systems are said to be 

linear when their basic equations—whether algebraic, d ifferential, or integral—are such that the magnitude of their 

behavior or response produced is directly proportional to the excitation or input that drives them. Even when devices like 

the pendulum are more fu lly described by nonlinear models, their behavior can often be approximated by linearized or 

perturbed models, in which cases the mathemat ics of linear systems can be successfully applied. We apply linearity when 

we model the behavior of a device or system that is forced or pushed by a complex set of inputs or excitations. We obtain 

the response of that device or system to the sum of the indiv idual inputs by adding or superposing the separate responses 

of the system to each individual input. This important result is called the principle of superposition. Engineers use this 

principle to predict the response of a system to a complicated input by decomposing or breaking down that input into a 

set of simpler inputs that produce known system responses or behaviors. 

 

VI. CONCLUS ION 

The mathematical modeling of devices and phenomena is essential in both engineering and science; engineers and 

scientists have very practical reasons for doing mathemat ical modeling. In  addition, engineers, scientists, and 

mathematicians want to experience the sheer joy of formulat ing and solving mathematical problems.  It  is most important 

to remember that mathemat ical models are representations or descriptions o f reality—by their very nature they depict 

reality and hence We want to know how to make or generate mathematical representations  or models, how to validate 

them, how to use them, and how and when their use is limited.  
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