NON OVERLAPPING CLOCKS FOR SWITCHED CAPACITOR CIRCUITS

Dhaval V. Agrawal¹, Mehul L. Patel²

¹Research Scholar EC Dept., L. C. Institute of Technology, Bhandu, Gujarat Technological University, Ahmedabad, India ²Research Scholar EC Dept., Institute of Technology, Nirma University, Ahmedabad, India

Abstract: Switched capacitor techniques are very popular forimplementation of Mixed Signal blocks in CMOS VLSI. Non-OverlappingClock (NOC) generator is one of the key blocksin the implementation of switched capacitor circuits. StandardNOC generator circuits available in the literature uses delaycircuits realized using simple inverters connected in a chain. By using inverter chain delay generated is very small so to generate larger delay it requires larger numbers of inverters. This affects the area and powerbudget of the design. In this work it is proposed to use inverters in inverted form to realize significant delay with less number oftransistors. Simulation results suggest that the proposed circuitwill be area and power efficient as compared to the conventionalNOC circuits.

Keywords: NOC(Non-overlapping clocks), SC (Switched capacitor circuits), Inverted inverter

I. INTRODUCTION

In Analog and Mixed Signal design Switchedcapacitor(SC) circuits are the most default standard for circuitimplementation in CMOS VLSI. SC circuits are very important as analog signal processing blocks such as switchedcapacitor integrators, filters and voltage comparators. Mixed signal applications like Analog to Digital Converter (ADC), Sigma Delta Modulators and Sampled Analog Architecturesemploy Switched Capacitor circuits extensively. SC circuits offerseveral advantages such as high accuracy, low power consumption and better temperature invariance. To implement any SCblock, it is required to charge and discharge the capacitorthrough switches by means of a non-overlapping clock. For implementation of NOC generator, there are several standard designsbased on the delay element realized through chain of inverters and few NAND/NOR gates. To achieve larger delay, some technique demands more number of inverters which in turn consumes more power and area. To reduce the number of stages for a given delay, use of transmission gates (TG) between two inverters are also proposed. In this kind of design, the delay of combinedblock (Inverter + TG) is more than that of two inverters of same size mainly due to the larger input capacitanceseen by the inverter. However, two parallel charging(discharging) paths through NMOS and PMOS combinationeffectively reduces the delay than expected.

In this paper use of inverter in combinationwith an Inverted inverter (altering the position of nMOS withpMOS and vice versa) as a unit delay element. As mentioned, the delay of this combination is more for two reasons. First, the signal swing of the inverted inverter is not rail to railbut less by VT on both sides. Therefore, the effective voltage swingof the inverted inverter output is between VDD - VTn to |VTp|. However, the voltage swing will beless if the input voltage to the inverted inverter has less thanfull swing, which will be the case when number of such blocksis connected as a chain. Thus, switching delay is increased bynot allowing the inverter transistors to tum off during the entireexcursion of the signal. Therefore, when NMOS transistor of the inverter is applied high voltage (VDD - VTn), both pulldownpath and pull-up path is active. Moreover, the nMOStransistor will be getting less gate source voltage, which results less drain current to pull the output to low state. Eventually, the discharging will be slower than that of a normal inverter with input VDD. Using similar logic, it is evident that pull-uptime will also be slower than that of a normal inverter withlogic 0 input.

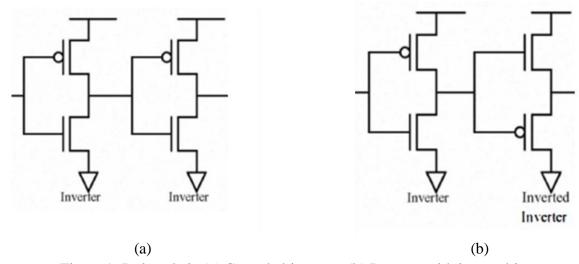


Figure 1: Delay chain (a) Cascaded inverter, (b) Inverter with inverted inverter

II. DELAY OF INVERTED INVERTER

The inverted inverter can be viewed as similar topass gate, where the drain terminal of nMOS is input, whichis now connected to VDD and the switch is activated by aweak logic high signal. Also, the drain terminal of PMOS is connected to ground and the switch is activated by weaklogic low signal. If we assume that the weak 1 (generated the output of the inverter) is represented by (VDD - x), the output of the pass gate will be (VDD - x - VTn), where VTn represents the threshold voltage of the inverter with bodyvoltage $\sim VDD - VTn$. Similarly, the output voltage of the pass gate when pMOS pass transistor is on will be weak 0 and is $\sim VTp$. Here also, |VTP| represents the threshold voltage of the pMOS transistor with substrate bias of VTP which willbe quite higher than VTpo.

III. NON-OVERLAPPING CLOCK GENERATOR

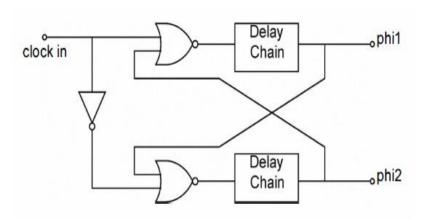


Figure 2: Block diagram of non-overlapping clock generator

To generate non-overlapping clocks with better delay, the block diagram is shown in figure. Here the NOR based circuit and for delay chain cascaded inverted inverter is used. As mentioned earlier inverted inverter has larger delay than cascaded inverter with same transistor count. Also by increasing stages we can achieve larger delay.

IV. SIMULATION RESULTS phil

Figure 3: Non overlapping clock generator using inverter chain

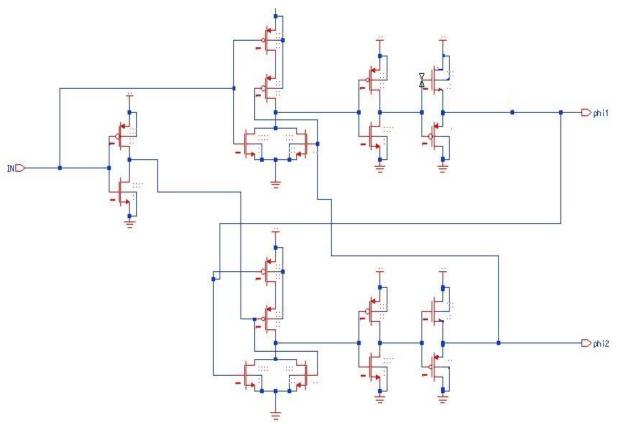


Figure 4: Non overlapping clock generator using inverted inverter

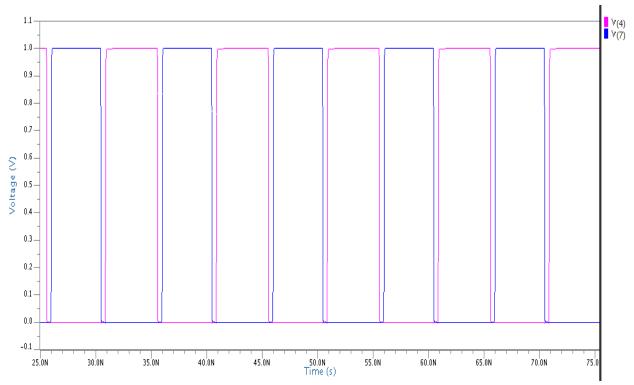


Figure 5: Non overlapping clock signals using inverted inverter

TABLE I: Delay comparison of non-overlapping clock generator using different architectures

	Cascaded Inverter	Inverter with Inverted inverter
Transistor Count	4	4
Delay	153ps	5.111ns

TABLE II. Comparison Table

	This work	[2]
Technology	90nm	180nm
Transistor Count	4	4
Delay	5.111ns	7.2ns

V. CONCLUSION

In this paper we have used inverter in combination with inverted inverter to generate non-overlapping clock signals. Use of this block is generates larger delay compared to inverter chain. By using this, delay between two non-overlapping clock is 5.111ns in 90nm technology.

REFERENCES

- [1] Philip E. Allen and Douglas R. Holberg, "CMOS Analog Circuit Design", 2nd Edition
- [2] Ashis Kumar Mal, Rishi Todani Department of ECE, "Non Overlapping Clock (NOC) Generator for Switched Capacitor Circuits"
- [3]RAZAVI B. and WOOLEY B., "Design techniques for high-speed, high-resolution comparators." IEEE Journal of Solid-State Circuits 1992
- [4]W. F. Lee, P. K. Chan, "A low-cost programmable clock generator for switched-capacitor circuit application," Springer Science + BusmessMedia, LLC 2006, April 2006.
- [5] Meng-LiehSheu, Ta-Wei Lin, Wei-Hung Hsu, "Wide frequency range voltage controlled ring oscillator based on transmission gates" ISCAS 2005, May 2005, vol 3, pp. 2731-2734
- [6] Yasuhiro Ogasahara, Masanori Hashimoto, Takao Onoye, "All digital ring oscillator based macro for sending synamic supply noise waveform" IEEE Journal of Solid-State Circuits, vol. 44, no. 6, June 2006, pp. 1745-1755.