
  International Journal of Advance Engineering and Research 
Development 

Volume 2,Issue 6, June -2015 

 

@IJAERD-2015, All rights Reserved                                                                    59 

 

Scientific Journal of Impact Factor(SJIF): 3.134 e-ISSN(O): 2348-4470 

p-ISSN(P): 2348-6406 

TOKEN BASED CREATIVE PARSER GENERATOR 
 

Ms.Yogita S.Alone
1
, Ms.Ruchita A. Kale

2
, Mr.Gaurav.  J. Sawale

3
 

      
1,2,3

Department of computer science & engineering ,PRMIT&R ,Badnera,Amravati, Maharashtra ,India 

   
 

Abstract: The parser generator is a context-free grammar. This context-free grammar is usually expressed in Backus -Naur 

form, BNF, or extended Backus-Naur form, EBNF, themselves metalanguages for context-free grammars. EBNF differs from 

BNF, allowing shortcuts resulting in fewer but more complicated productions.In this paper we praposed annotation based 

innovative Parser generator, and also find the solution for generating parsers for textual languages. Thepaper presents 

innovative parser construction method and parser generator prototype which generates a computer language parser from a 

set of annotated classes.In the presentedapproach a language with textual concrete syntax is definedupon the abstract syntax 

definition extended with sourcecode annotations. The process of parser implementation ispresented on selected concrete 

computer language – the SimpleArithmetic Language. 

 

Keyword: Parsing, debugging, annotation,XML, Expression Tree, Lexical constructs. 
 

 

I. INTRODUCTION: 

 

In this paper we present the innovative approach  to  the definition of concrete syntax for a computer  Language with 

textual notation. Computer Languages are crucial tools in the development of  software system. By using computer languages  

it define the structure of system and its behavior [1]Developers use different languages and paradigms throughout the 

development of a software system according to a nature of concrete sub problem and  their preferences .Beside the general 

purpose programming languages(eg. C#) the domain specific languages(DSL) have become popular.DSLs have their stable 

position in the development of software system in many differentForms. Program analysis tools are the keystone of  good 

software reverse engineering applications  

 

In particular, Itcan distinguish between static analysis, concerning information gleaned from theprogram code, and 

dynamic analysis concerning informat ion collected from running the program.At the level of static analysis, we can identify 

four main levels of information, associated with four phases of compilat ion:  

1.Preprocessing involves dealing with Conditional compilation and textual inclusion, and is main ly an  

issue in C and C++, although C# also has a limited form of preprocessor. 

2.Lexical analysis collects characters intowords, band eliminates comments and whitespace. Tools working at the lexical 

level can provide crude lex, metrics by analyzing keywords, and can often be constructed using relatively simple tools such 

as grep or awk. 

3.Parsing-level analysis concerns the hierarchical categorizat ion of program constructs into syntactical categories such as 

declarations ,expressions, statements etc. 

4.Semantic  analysis deals with issues such as definition use pairs, program slicing and identifier  Analyses .Concerning 

abstraction level,  

 

It is possible to  program closer to a domain. Furthermore DSLs  enables explicit  separation of knowledge in the system in 

natural structured form of domain. The growth of their popularity is probably  interconnected with the growth of XML 

technology and using of standardized industry XML document  parsers as a preferable option to a construction of  a language 

specific parsers. A developer with  minimal knowledge about language parsing is able to create a DSL with XML compliant 

concrete syntax using tools like JAXB[10]. Even though XML documents are suitable for document exchange between 

different platforms they are too verbose to be created and read by humans. On the other side, XML languages are easily 

extensible withnew language elements according to theirnature and processors  so they are perfectly suited for constantly 

evolving domains. It  focus on the definition of abstract syntax rather than giving an excessive concentration on concrete 

syntax. 

 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

@IJAERD-2015, All rights Reserved                                                                    60 

 
 

In this  approach the abstract syntax of  a language is formally defined using standard  classes well known from object -

oriented  Programming. In our approach the language implementation begins with the concept  formalizat ion in the form of 

abstract syntax.  Language concepts are defined as classes and relationships between them. Parser generator-traditional 

approach Fig 1:comparing tradit ional and innovative approach Upon such defined abstract syntax a developer  defines both 

the concrete syntax through a set of source code annotations and the language semantics through the object methods. 

Annotations (called also attributes) are structured way of  additional knowledge incorporated directly into the  source code. 

During the phase of concrete syntax  definit ion the parser generator assists a developer. with suggestions for making the 

concrete syntax Unambiguous. Fig 2 shows the whole process ofparser implementation using the described  approach. If the 

concrete syntax is Unambiguously defined then parser generator automatical ly generates the parser from annotated classes. 

 

The paper presented  on Annotation based innovative parser generator is organized as follow introduces us Annotation 

based innovative parser generator. II:Discusses Literature review of parser generator , as  well as  abstract and concrete 

syntax,  defines System analysis and design, System arch itecture, several well -known widely used annotation , and 

algorithms are presented, also, System requirements are defined. techniques. presents Conclusion on this annot ation based 

innovative parser generator 

 

 

II. LITERATURE REVIEW 

 

In “Program annotation in XM L: a parser-based  approach” outlined a general algorithm  for the modification of the bison 

parser generator,  so that it can produce a parse tree in XML format.  We have also discussed an immediate application  of 

this technique, a portable modificat ion of the  gcc compiler, that then allows for XML output for  C, Objec tive C, C++ and 

Java programs. By  modifying bison rather than gcc directly, we have  produced a tool that is applicable in any domain  that 

uses the bison parser generator and, in  particular, is directly applicable to multip le versions of gcc. While our approach does 

not have  the same semantic richness as other approaches.it does have the advantage of being language  independent, and thus 

re-usable in a number of  d ifferent domains.it as a  stand-alone product, but believe that it will be  useful as a starting point 

for more language[2] 

 

 “Introduction to JavaCC”A particularly common case is where the output of the parser is a tree that closely conforms to 

the tree of method calls made  by the generated parser. In this case, there are  additional tools th at can be used in conjuction 

with  JavaCC to automate the augmentation of the  grammar. These tools are JJTree and JTB and are   the subject of Chapter 

[TBD]. It is important to note that the lexical analyser works quite independently of the parser. In “Au tomatic Generation of 

Language-based  Tools using the LISA system”, Many applications  today are written in well-understood domains.Onetrend 

in programming is to provide software tools designed specifically to handle the development of domain -specific applications 

in order to greatly  simplify their construction. These tools take a  high -level description of the specific task and generate a 

complete application[3]. 

 

In “Static Analysis for Event-Based XML Processing”, the challenges that must be  tackled in order to provide static 

analysis of event-  based XML processing applications that use general purpose programming languages. Concretely, this 

paper has focused on SAX. The challenges include reasoning about sequences of   SAX events both as input and as output, 

flow sensitive string computations, attribute maps, and  field variables in Java. In addition to discussing  the challenges, we 

have outlined a strategy for a  particu lar program analysis that  may serve as a  starting point[4].  

 

 In “adaptive table-driven XML parsing and validation technique” that can be used to develop extensible high -

performance Web services. The  adaptive TDX encodes XML parsing states in compact tabular forms by support of 

permutation  phrase grammar. As a result it ensures a memory space efficiency. This adaptive approach uses interpretive 

scanning at run time by leverag ing these tabular forms to improve scanning performance [7]. 

 

In “A Language description is more than a  metamodel” ,the act of language design is one in which a carefull balance 

must be upload between the three main elements of language description: abstract syntax ,concrete syntax and semantics .A 

software should be built iteratively starting with parts of the abstract syntax, then adding concrete syntax and sema ntics to 

these parts.Design Patterns in Parsing it  discussed oops3as an example for the consequent use of design patterns in parsing 

and parser generation and it pointed out significant benefits of the architecture. The central concept is to represent sou rce  

programs as trees and to implement tree  manipulation using the Visitor pattern. Tree classes usually are specific to the 

source grammar  and provide natural boundaries for divide-and-conquer in all algorithms. The Visitor pattern combines the 

class-specific pieces of an algorithm in a central class. Recognition is implemented as a visitor with template methods. It is 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

@IJAERD-2015, All rights Reserved                                                                    61 

 
 

sub classed to Provide different ways to observe the recognition process. One particular Observer pattern instance connects 

recognition to a tree factory to represent  a source program; the tree factory can be  generated from annotations in the source 

grammar[22]. 

 

The Unix utility YACC parser a stream of token typically generated by lex,according to user specified grammar defin ition 

section includes include three things Ccode,definit ion& associativity rules.It explore all the rule which are mention above and 

extend the concept with the help of program examples.Conceptuallylex parses a file  of characters and output a stream of 

tokens;yacc accepts a stream of tokens and parses it,performing action as appropriate.[21] 

 

The development of superfast compilers such as are found in Borland's Turbo Pascal and Delphi systems.The  fact that the 

use of high-level languages distances the programmer from the low-level nuances of a machine may lead to other difficulties 

and misconceptions [20]. 

 

A formal language description, ANTLR generates a program that determines whether sentences conform to that language. 

By adding code snippets to the grammar, the recognizer becomes a translator. The code snippets compute output phrases 

based upon computations on input phrases. ANTLR is suitable for the simplest and the most complicated language 

recognition and translation problems[10]. 

 

These exposed the challenges that must be tackled in order to provide static analysis of event -based XML processing 

applications that use general purpose programming languages. Concretely, this paper has focused on  SAX. The challenges 

include reasoning about sequences of SAX events both as input and as output, flow sensitive string computations, attribute 

maps, and field variables in Java. In addition to discussing the challenges, it proposed a strategy for a partic ular program 

analysis that may serve as a starting point. To summarize, the key ideas suggested here are the following, which build on top 

of the existing program analysis technique for Java Serv lets and XACT[22] 

 

In 2002 ,SrikanthKarre et. al  exp lains that  the parsing of XML documents can be done using two approaches, Event 

Based Parsing and Tree BasedParsing. In Event Based Parsing, the XML data is parsed sequentially, one component at a 

time, and the parsing of events such as the start of a document, o r the end of a document are reported directly to the 

application. SAX (Simple API for XML) is the standard API for event-driven parsing. In Tree Based Parsing, the XML 

document is compiled into an internal tree structure and stored in main memory [1]. Applicat ions can then use this tree 

structure for navigation and data extraction. For example, the Document Object Model (DOM) uses tree based parsing, 

providing a standard set of objects for representing HTML and XML documents, a standard model of how these objects can 

be combined, and a standard interface for accessing manipulating them.  

 

In 2004, Robert A et. al. describes a validating XML parsing method based on deterministic fin ite state automata (DFA). 

XML parsing and validation is performed by a schema-specific XML parser that encodes the admissible parsing states as a 

DFA. This DFA is automatically constructed from the XML schemas of XML messages using a code generator. A two level 

DFA architecture is used to increase efficiency and to reduce the generated code size. The lower-level DFA efficiently parses 

syntactically well-formed XML messages [4]. The higher-level DFA validates the messages and produces application events 

associated with transitions in the DFA. Two example case studies are presented and performance results are given to 

demonstrate that the approach supports the implementation of high-performance Web services. 

 

In 2007, Su Cheng Haw et. al. -A Comparat ive Study and Benchmarking on XML Parsers, they studied different XML 

parsers and determine the strength and weaknesses of the product. Various studies have been conducted which compare on 

conformance to standards, speed, memory usage and so on [6] 

 

 

III. PROPOS ED S YSTEM 

 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

@IJAERD-2015, All rights Reserved                                                                    62 

 
 

 
 

Fig 1:system flow 

 

In Annotation based innovative Parser generator Annotation extend with additional informat ion require for specification 

of  concrete syntax, for example keywords and operator notation.The fig 4:show the data flow diagram of system. Stepwise 

description of proposed system design: 

1. Initially load the file of any extension in annotation based innovative parser generato r , there is no restriction  on type of 

file ,it may be(.doc,.txt,.rar,etc).  

2. After loading the parser converts the loaded file into text file with help of object notation, it then find the hash value for 

content of text file. 

3. Form those hash values parser generates the binary tree structure form.  

4. From generated tree structure it count all annotations, parenthesis and also find the errors. 

 

 

IV. SYSTEM ARCHITECTURE 

 

It is quite common to have multip le notations for  one language. RELAX NG is an example of such a language with two 

different notations.XML syntax  and compact syntax. By using this approach different notations of the same  language can 

share both abstract syntax and  Semantics. This means that other notations of the same language are not affected by this type 

of  language evolution. For instance, Fig 3 presents. the language with 4 different notations sharing the  same abstract synt ax 

and semantics. 

 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

@IJAERD-2015, All rights Reserved                                                                    63 

 
 

 
Fig 2:Generating Language Parser 

. 

 

Lexical constructs: Terminal symbols refering to complex strings defined by a regular expression (e.g., identifier).  

Lexical constructs are specified as strings that contain letters and underscores ( ) only. In defining a category, a developer 

may use the different EBNF. Using this notation, a category <expression> specifying the syntax for prefix arithmetic 

expressions could have the following syntax: 

<expression> ::= integer j [ ’+’ j ’-’ j ’*’ j ’/’ ] <expression><expression> ; 

From this, we see that an expression is either an integer value (lexical construct integer) or an arithmetic operator (either ’+’, 

’-’, ’*’, or ’/’), followed by two expressions. When building a parser, it performs a number of verificat ions. First, it identify 

parasite categories. These are categories that never lead to reserved words or lexical constructs. In other words, parasites are 

infinitely expanding categories. Second, it  listed symbols that are never used, also called inaccessible symbols. These are 

reserved words or lexical constructs which may never be reached from the main category of the language. Parasites and 

inaccessible symbols normally generate warnings, telling the developer that some detailed analysis of the language must be 

performed to ensure that there is no error.The semantics of SAL is formally defined using Eval function which maps a value 

from syntactic domain Expression to a value from semantic domain Z (integers) and Value function which maps a va lue from 

syntactic domain Number to a value from semantic domain Z.  

Eval : Expression ® Z 

 

In this approach the language implementation begins with the concept formalization in the form of abstract syntax. 

Language concepts are defined as classes and relationships between them. Upon such defined abstract syntax a developer 

defines both the concrete syntax through a set of source code annotations and the language semantics through the object 

methods. Annotations (called also attributes) are structured way of additional knowledge incorporated directly  into the source 

code. During the phase of concrete syntax definit ion the parser generator assists a developer with suggestions for making the 

concrete syntax unambiguous. Fig 3 shows the whole process of parser implementation using the described approach. If the 

concrete syntax is unambiguously defined then parser generator automatically generates the parser from annotated 

classes.Grammars are defined using EBNF (Extended Backus -Naur Form) syntax. In this syntax, we d istinguish between 

three concepts: 

Categories: Non-terminal symbols which are defined using an EBNF description.Categorynames are specified as strings 

written between < and > (e.g., <grammar>).  

Reserved words: Terminal symbols refering to a specific string (e.g., while). Reserved words are specified as strings between 

single quotes (’) (e.g., ’while’).Lexical constructs: Terminal symbols refering to complex strings defined by a regular 

expression (e.g., identifier). Lexical constructs are specified as s trings that contain letters and underscores ( ) only. In defining 

a category, a developer may use the different EBNF. Using this notation, a category <expression> specifying the syntax for 

prefix arithmetic expressions could have the following syntax:  

<expression> ::= integer j [ ’+’ j ’-’ j ’*’ j ’/’ ] <expression><expression> ; 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

@IJAERD-2015, All rights Reserved                                                                    64 

 
 

From this, we see that an expression is either an integer value (lexical construct integer) or an arithmetic operator (either ’+’, 

’-’, ’* ’, or ’/’), followed by two expressions. When building a parser, performs a number o f verifications.  

 

First, it identify parasite categories. These are categories that never lead to reserved words or lexical constructs. In othe r 

words, parasites are infinitely expanding categories. Second ,it lis ted  symbols that are never used, also called inaccessible 

symbols. These are reserved words or lexical constructs which may never be reached from the main category of the language. 

Parasites and inaccessible symbols normally generate warnings, telling the developer that some detailed analysis of the 

language must be performed to ensure that there is no error.The semantics of SAL is formally defined using Evalfunction 

which maps a value from syntactic domain Expression to a value from semantic domain Z (int egers) and Value function 

which maps a value from syntactic domain Number to a value from semantic domain Z.  

Eval : Expression ® Z 

Value : Number ® Z 

The semantic function Eval is defined by the following equations. 

Eval [| Number n |] = Value [| n |]  

Eval [| UnaryMinus e |] = – Eval [| e |] 

Eval [| Add e1 e2 |] = Eval [| e1 |] + Eval [| e2 |]  

Eval [| Mul e1 e2 |] = Eval [| e1 |] * Eval [| e2 |]  

Certainly we can find many different notations for SAL. For example, we can write down a sentence from SAL in the 

following notation using standard symbols and the operator infix form.  

1 + 2 * 7 

Above fig:3 abstract syntax t ree of the sentence above is depicted. 

 

 
 

Fig 3: abstract syntax tree  

 

 

V. CONCLUS ION 

 

The language itself is specified by a set of annotated classes. Annotation extend with additional informat ion require for 

specification of  concrete syntax, fo r example keywords and operator notation  . it describes  the definition of  abstract syntax 

and continue with creation of language in incremental way, it compare traditional approach of syntax. The languageparser 

generated  by using annotation. The generation of parser language counts the toke ns, special symbol

 parenthesis.Innovative parser construction method and parser generator prototype which generates a computer 

language parser from a set of annotated classes in contrast to classic parser generators which specify concrete syntax of a 

computer language using BNF notation .In the presented approach a language with textual concrete syntax is defined upon 

the abstract syntax defin ition extended with source code annotations. The process of parser implementation is presented on 

selected concrete computer language.These exposed the challenges that must be tackled in order to provide static analysis of 

event-based XML processing applications that use general purpose programming languages. Concretely, this paper has 

focused on SAX. The challenges include reasoning about sequences of SAX events both as input and as output, flow 

sensitive string computations, attribute maps, and field variables in Java. In addition to discussing the challenges, it prop osed 

a strategy for a particular program analysis that may serve as a starting point..In relations can be classified with good 

performance and two advantages of our method actually improved the performance of relation classification. The 

immediately extension of our work is to improve the performance of relation classificat ion by enriching the dataset, For 

compatibility, the types from the DTD specificat ion have been translated mechanically. A careful analysis of the original 

XML document might lead to a more precise specificat ion of the types of elements and attributes. 

 

REFERENCES: 

 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

@IJAERD-2015, All rights Reserved                                                                    65 

 
 

[1]. JaroslavPorubän, Michal Forgáč, and JaroslavPoruban,Michal.Forgac,Miroslav.Sabo:for the Java Programming 

Language”,  

[2]. A.G. Kleppe.: A Language Description is More than a Metamodel. In: Fourth International Workshop on Software 

Language Engineering, 1 Oct 2007, Nashville, USA.  

[3]. M. Mernik, J. Heering, A. M. Sloane, “When and How to Develop Domain- Specific Languages”, ACM Computing 

Surveys, Vol. 37, No. 4, December 2005, p. 316–344. 

[4]. P. A. Muller, F. Fondement, F. Fleurey, M. Hassenforder, R. Schneckenburger, S. Gerard, J.M. Jezequel, :Model-Driven 

Analysis and Synthesis of Textual Concrete Syntax, Journal on Software and SystemsModeling (SoSyM), Volume 7 (4), 

Springer, 2008, p. 423 - 441. 

[5]. T. Parr, The Definitive ANTLR Reference: Building Domain-Specific Languages, Pragmatic Bookshelf, 376 pp. (2007). 

[6]. M. Mernik, J. Heering, A. M. Sloane, “When and How to Develop Domain -Specific Languages”, ACM Computing 

Surveys, Vol. 37, No. 4,December 2005, p. 316–344. 

[7].  P. A. Muller, F. Fondement, F. Fleurey, M. Hassenforder, R. Schneckenburger,S. Gérard, J.M. Jézéquel, : Model-Driven 

Analysis andSynthesis of Textual Concrete Syntax, Journal on Software and SystemsModeling (SoSyM), Volume 7 (4), 

Springer, 2008, p. 423 - 441. 

[8].  T. Parr, The Definit ive ANTLR Reference: Build ing Domain-SpecificLanguages, Pragmatic Bookshelf, 376 pp. (2007).  

[9]. “RELAX NG Specification”, http://relaxng.org/ , 2003.vb.  

[10]. T. Stahl, M. Voelter, Model-Driven Software Development:Technology, Engineering, Management, Wiley, 2006. 

444 p. ISBN0470025700. 

[11]. P. D. Terry, Compiling with C# and Java, Addison Wesley, 2004, 624p. ISBN 032126360X.  

[12]. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers – Princip les, Techniques, and Tools,Addison-Wesley, Reading, 

Massachusetts, 1986. [Demonstrates how grammars are usedin the construction of compilers for programmin g 

languages.] 

[13]. S.C. Johnson, Yacc – Yet Another Compiler-Compiler, Computer Science Tech. Rept.No. 32, Bell Laboratories, 

Murray Hill, New Jersey, July 1975. 

[14]. TWEAST: A Simple and Effective Technique to ImplementConcreteSyntaxAST Rewriting Using Partial 

ParsingAkimDemaille Roland LevillainBenoˆıtSigoureEPITA Research and Development Laboratory (LRDE)14/16, rue 

Voltaire, F94276,Le KremlinBicˆ etre, France.  

[15]. Induction, Grammars, and Parsing 

[16]. COMPTOOLS: A CompilerGenerator for C and JavaPar : Gilbert Babin Cahier de recherche no 04-0910 novembre 

2004. 

[17]. Formalizing adequacy:a case study for higher-order abstract syntaxJames Cheney  Michael Norrish Rene 

Vestergaard. 

[18]. Textual Notation Syntax Defin itionOn the Design of Application Protocols  

[19]. Maptool-Mapping between concrete And Abstract Syntaxes”BasimM.Kadhim,WilliamM.Waite 1995 

[20]. Integrated Denition of Abstract and ConcreteSyntax for Textual LanguagesHolgerKrahn, Bernhard Rumpe, and 

Steven Volkel2007 

 

 

 

 

 

 

 

 

 

 

 

 


