Weight Optimization Of Steel Roof Truss With Different Types, Spans & Slopes of Roof

Nikhil B. Fultariya

Student of M.E. Civil (Str.), Civil Engineering Department, Darshan Institute Of Engineering & Technology, Rajkot-363650, Gujarat-India

Abstract—The main aim of this study is to weight optimize of steel roof truss according to different type truss, span & slop of roof. The design load are from IS 875 Part-1 to 3 and design of member as per IS:800:2007. The entire work of analysis is carried in Staad.pro software.

Keywords-N-Type, Pratt type, Fan type, Howe type, Staad.pro

I. INTRODUCTION

A roof truss is basically a framed structure formed by connecting various members at their ends to form a system of triangles, arranged in pre-decided pattern depending upon the span, Type of loading and functional requirements .In industrial buildings, steel trusses are commonly used.

Some of the points are noted regarding analysis and design of these structure are as follow

Building Height	-	10.0m
Length (span) of truss	-	6, 10, 14, 18, 22, 26, 30 m
Spacing of truss	-	4.0 m
Slope of roof	-	12, 16 and 20 degree
Purlin spacing	-	1.40 m
Roofing Material	-	A.C. Sheet
Types of truss	-	N-Type, Pratt Type, Howe Type, Fan Type
Wind zones	-	I, IS:875 (Part-3) - 1987

Trusses have been designed for design life of 50 years, category 1 and class A & B as mentioned in IS : 875 (Part-3)-1987, The analysis & design has been made using computer programme Staad.pro. Trusses have been designed for angle sections only. The structure with steel roof trusses have been designed following the provisions of IS: 800-2007 for hot rolled section. SP-6 is used for section properties

II. FIGURE OF TYPES OF TRUSS

N-Type Truss

International Journal of Advance Engineering and Research Development (IJAERD) Volume 1,Issue 5,May 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

Howe Type Truss

Fan Type Truss

International Journal of Advance Engineering and Research Development (IJAERD) Volume 1,Issue 5,May 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

III. Matrix of Optimized weight(Kg) according to Type and Span of truss

	Wi	nd Zone =	Ι				
Slop of roof = 12			12 ⁰	Spacing = 4 m			
Span(m)	6	10	14	18	22	26	30
Туре							
Ν	84.811	196.805	426.343	700.851	1015.229	1473.286	2106.529
Pratt	79.231	183.039	396.975	676	990.96	1370.6	1914.619
Howe	83.82	186.914	409.824	688.818	919.07	1531.156	2104.286
Fan	80.224	184.939	415.228	643.951	926.514	1363.054	1880.051

	Wi	nd Zone =	Ι				
Slop of roof =			16 ⁰	Spacing = 4 m			
Span(m)	6	10	14	18	22	26	30
Туре							
Ν	86.166	208.532	410.333	672.197	1006.562	1405.883	1973.66
Pratt	78.62	184.568	360.062	558.702	998.608	1425.461	2068.8
Howe	84.432	194.459	385.656	608.872	979.539	1494.802	2155.68
Fan	80.224	187.933	364.956	566.96	951.293	1381.817	1960.302

Wind Zone =			Ι				
Slop of roof =			20 ⁰	Spacing = 4 m			
Span(m)	6	10	14	18	22	26	30
Туре							
Ν	84.84	209.857	404.827	691.775	959.859	1491.845	2039.636
Pratt	84.33	198.844	359.144	680.558	1188.887	1765.434	2477.808
Howe	88.511	210.265	397.077	719.103	1253.231	1833.245	2506.258
Fan	86.748	200.068	364.446	659.144	1218.255	1691.301	2317.917

International Journal of Advance Engineering and Research Development (IJAERD) Volume 1, Issue 5, May 2014, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

IV. CONCLUSION

We conclude from the above result that, change in type of truss with span and roof inclination give us lighter weight truss. e.g. for 30.0 mt span, Fan type with 12° is lighter weight truss.

REFERENCES

IS 800 : 2007 General Construction In Steel-Code Of Practice,

IS 875 (Part 1) : 1987 Code Of Practice For Design Loads (Other Than Earthquake) For Buildings And Structures - Dead Loads

IS 875 (Part 2) : 1987 Code Of Practice For Design Loads (Other Than Earthquake) For Buildings And Structures -Imposed Loads

IS 875 (Part 3) : 1987 Code Of Practice For Design Loads (Other Than Earthquake) For Buildings And Structures -Wind Loads

SP 6(1) : 1987 Handbook For Structural Engineers – Structural Steel Section

Design Of Steel Structures By. N. Subramanian