
  International Journal of Advance Engineering and Research 
Development 

Volume 2,Issue 5, May -2015 
 

@IJAERD-2015, All rights Reserved                                                                    153 

 

Scientific Journal of Impact Factor(SJIF): 3.134 
e-ISSN(O): 2348-4470 

p-ISSN(P): 2348-6406 

Methods of Detection and Prevention of SQL Injection with Some Java Code 

JinalPatel 

Computer And Science Department,Saffrony Institute of Technology ,Linch,Mehsana 
 

Abstract:  In this paper, we are presenting a fundamentals of SQL Injection. Also we will discuss the types of SQL Injection. 

Then we will detect the SQL injection and provide the detection algorithm includes these steps: lexicalanalysis of source 

code, parsing of source code, constructingabstract syntax tree of source code, defining rules of SQL injection attack . And the 

methods to prevent the SQL injection. 

 
Keywords: SQL Injection, SQL Injection Detection, SQL Injection Prevention, Prepared statement, SQL Queries. 

 

I. INTRODUCTION 

 

What is SQL Injection? 

 

A SQL inject ion attack consists of insertion or "injection" in a SQL query using the input data from the client to the 

application. A successful SQL inject ion exp loit can read sensitive data from the database, modify database data 

(Insert/Update/Delete), execute administration operations on the database (such as shutdown the DBMS), re cover the content 

of a given file present on the DBMS file system and in some cases issue commands to the operating system. SQL in jection 

attacks are a type of injection attack, in which SQL commands are injected into data-plane input in order to effect the 

execution of predefined SQL commands. 

 

Threat Modeling: 

 SQL injection attacks allow attackers to spoof identity, tamper with existing data, cause  repudiation issues such as 

voiding transactions or changing balances, allow the complete disclosure of all data on the system, destroy the data or 

make it otherwise unavailable, and become admin istrators of the database server. 

 SQL In jection is very common with PHP and ASP applications due to the prevalence of older functional interfaces. Due 

to the nature of programmat ic interfaces available, J2EE and ASP.NET applications are less likely to have easily 

exploited SQL in jections. 

 The severity of SQL In jection attacks is limited by the attacker‟s skill and imagination, and to a lesser extent, defense in 

depth countermeasures, such as low privilege connections to the database server and so on. In general, consider SQL 

Injection a high impact severity. 

 

SQL in jection errors occur when: 

1. Data enters a program from an untrusted source. 

2. The data used to dynamically construct a SQL query  

The main consequences are: 

 Confidentiality: Since SQL databases generally hold sensitive data, loss of confidentiality is a frequent problem 

with SQL Inject ion vulnerabilit ies. 

 Authentication: If poor SQL commands are used to check user names and passwords, it may be possible to connect to a 

system as another user with no previous knowledge of the password. 

 Authorization: If authorization information is held in a SQL database, it may be possible to change this information 

through the successful exp loitation of a SQL In jectionvulnerability. 

 Integrity: Just as it may be possible to read sensitive informat ion, it is also possible to make changes or even delete this 

informat ion with a SQL Injection attack. 

 

II. METHODS 

 

There are many methods of SQL in jection some of them which are simply understandable are as below:   

https://www.owasp.org/index.php/SQL_injection
https://www.owasp.org/index.php/Top_10_2007-Injection_Flaws
https://www.owasp.org/index.php/Glossary#SQL_Injection
https://www.owasp.org/index.php/Glossary#SQL_Injection
https://www.owasp.org/index.php/Glossary#SQL_Injection


International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

 
@IJAERD-2015, All rights Reserved                                                                    154 

 
 

 Incorrectly filtered escape characters: 

This form of SQL in jection occurs when user input is not filtered for  escape characters and is then passed into a SQL 

statement. This results in the potential man ipulation of the statements performed on the database by the end-user of the 

application. 

The following line of code illustrates this vulnerability: 

statement = "SELECT*FROM users WHERE name ='" + userName + "';" 

This SQL code is designed to pull up the records of the specified username from its table of users. However, if the 

"userName" variable is crafted in a specific way by a malicious user, the SQL statement may do more than the code author 

intended. For example, setting the "userName" variable as: 

„ or „1‟=‟1 

or using comments to even block the rest of the query (there are three types of SQL comments). All three lines have a space 

at the end: 

' or '1'='1' –  

' or '1'='1' ({  

' or '1'='1' /*  

renders one of the following SQL statements by the parent language: 

SELECT*FROM users WHERE name =''OR'1'='1'; 

SELECT*FROM users WHERE name =''OR'1'='1'-- ';  

If this code were to be used in an authentication procedure then this example could be used to force the selection of a valid 

username because the evaluation of '1'='1' is always true. 

 

 Incorrectly Type Handling: 

This form of SQL inject ion occurs when a user-supplied field is not strongly typed or is not checked for type constraints. This 

could take place when a numeric field is to be used in a SQL statement, but the programmer makes no checks to validate that 

the user supplied input is numeric.  

For example: 

statement := "SELECT*FROMuserinfoWHERE id =" + a_variable + ";" 

It is clear from this statement that the author intended a_variable to be a number correlating to the "id" field. However, if  it is 

in fact a  string then the end-user may manipulate the statement as they choose, thereby bypassing the need for escape 

characters. For example, setting a_variable to  

1;DROP TABLE users 

will drop (delete) the "users" table from the database, since the SQL becomes:  

SELECT*FROMuserinfoWHERE id=1;DROPTABLE users; 

 

 

 Blind SQL Injection : 

Blind SQL Inject ion is used when a web application is vulnerable to an SQL inject ion but the results of the injection are not 

visible to the attacker. The page with the vulnerability may not be one that displays data but will d isplay differently 

depending on the results of a logical statement in jected into the legitimate SQL statement called for that page. This type of 

attack can become t ime-intensive because a new statement must be crafted for each b it recovered. There are several tools that 

can automate these attacks once the location of the vulnerability and the target informat ion has been established . 

Conditional responses 

One type of blind SQL in jection forces the database to evaluate a logical statement on an ordinary application screen. As an 

example, a book review website uses a query stringto determine which book review to display. So 

the URL http://books.example.com/showReview.php?ID=5  would cause the server to run the 

querySELECT*FROMbookreviewsWHERE ID ='Value(ID)'; from which it would populate the review page with data from 

the review with ID 5, stored in the table bookreviews. The query happens completely on the server; the user does not know 

the names of the database, table, or fields, nor does the user know the query string. The user only see s that the above URL 

returns a book review. A hacker can load the URLs http://books.example.com/showReview.php?ID=5 OR 1=1 and 

http://en.wikipedia.org/wiki/Escape_character
http://en.wikipedia.org/wiki/Strongly_typed
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/End-user
http://en.wikipedia.org/wiki/Query_string
http://en.wikipedia.org/wiki/URL
http://en.wikipedia.org/wiki/Identifier
http://en.wikipedia.org/wiki/Table_(database)
http://en.wikipedia.org/wiki/Hacker_(computer_security)


International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

 
@IJAERD-2015, All rights Reserved                                                                    155 

 
 

 http://books.example.com/showReview.php?ID=5 AND 1=2, which may result in queries  

SELECT*FROMbookreviewsWHERE ID ='5'OR'1'='1'; 

SELECT*FROMbookreviewsWHERE ID ='5'AND'1'='2';  

respectively. If the original review loads with the "1=1" URL and a blank or error page is returned from the "1=2" URL, and 

the returned page has not been created to alert the user the input is invalid, or in other words, has been caught by an input  test 

script, the site is likely vulnerable to a SQL in jection attack as the query will likely have passed through successfully in both 

cases. The hacker may proceed with this query string designed to reveal the version number of MySQL running on the 

server: 

http://books.example.com/showReview.php?ID=5 AND substring(@@version,1,1)=4,  

which would show the book review on a server running MySQL 4 and a blank or error page otherwise. The hacker can 

continue to use code within query strings to glean more informat ion from the server until another avenue of attack is 

discovered or his or her goals  are achieved 

 

 Second Order SQL Injection : 

 

Second order SQL in jection occurs when submitted values contain malicious commands that are stored rather than executed 

immediately. In some cases, the application may correctly encode a SQL statement and store it as valid SQL. Then, another 

part of that application without controls to protect against SQL injection might execute that stored SQL statement. This atta ck 

requires more knowledge of how submitted values are later used. Automated web application securit y scanners would not 

easily detect this type of SQL in jection and may need to be manually instructed where to check for evidence that it is being 

attempted. 

 

III. DETECTION 

 

ORDINARY SQL INJECTION ATTACK DETECTION ATTACK AND DEFENS E 

 

Ordinary SQL injection attack main detection techniques are as follows: 

 

(1) White box detection: It is to check static web pagein o rder to search for all paths where SQL in jection attack maygenerat e 

by static analysis and to inspect the quality of webpage that being published before. For example, Fortify . 

 

(2) Black box detection: It is to use a rule library tosimulate hacker attacking application program and to pinpointthe 

problems by analyzing the results that the applicationprogram perform. For example, AppScan. 

 

PRINCIPLE OF STATIC ANALYS IS SCANNING 

 

Programming static analysis is not to execute the programand to find potential safety hazard in program with thealgorithm 

automatically scanning. It has the followingadvantages: quickly performing and high effect ively etc.Source code with static 

analysis employs lexical analysis and 

parsing of compiling technology. The principle of staticanalysis is illustrated in Figure 1.  

 

 
 

http://en.wikipedia.org/wiki/MySQL


International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

 
@IJAERD-2015, All rights Reserved                                                                    156 

 
 

Figure1. The princip le of source code with static analysis  

 

Algorithm: 

 

The proposed algorithm of Java source-code SQLinjection attack detection. 

 

The grammar defin ition of version Java1.6 is pointed out.Based on the principle of static analysis, with lexical analysisof 

source code and parsing of source code, construct abstract 

syntax tree of source code according to program structure.Different nodes on the abstract syntax tree are marked byspecial 

signs in order to improve the efficiency of the proposedalgorithm. The proposed SQL injection attack detectionalgorithm 

includes the following steps: 

 

Step 1. Abstract syntax tree traversal .  

To search for allnodes named executeQuery , executeUpdate, execute orexecuteBatch under the branch node of 

METHOD_DECL andto store them in the Hash keyNode table.  

 

Step 2. To confirm whether each of all nodes in the HashkeyNode table is at- risk or not . 

Step 2.1 Firstly, to gain the former expression of thekeyNode and to obtain types of return value about the formerexpression.  

Step 2.2 If the type of return value about the formerexpression.is java.sql.Statement, this node can be validated. 

Then go to next step; Othewise, go to Setp 2 and analyze thenext node. 

 

Step 3.Obtain the first parameter as the path of node aboutconfirmed nodes, analyze and track data flow of nodes on thepath: 

Step 3.1. Analyze and track nodes that are variablesexpression on the path 

Step 3.2. Analyze and track nodes that are methodological expression on the path. 

Step3.3. End the condition of tracking: 

(1) If all the tracking variables are constant, there is notSQL in jection attack on the path and go t o Step 2. 

(2) Track the methodological nodes that are APIdefined ,and go to Step 4.  

 

Step 4. Record and store paths of QL inject ion attack andgo to Setp2,analyze the next the node. The algorithm stopswhen all 

nodes are detected in the keyNode table. 

importjava.sql.Statement; 

importjava.sql.ResultSet; 

importjavax.servlet.http.HttpServletRequest; 

public class Test 

{ 

Statement statement = new Statement(); 

public void testMethod(HttpServletRequest request); 

{ 

StringBuffersqlStatement = newStringBuffer("select * from employee where userid=");  

String id = request.getParameter("userid"); 

if (id != null) 

sqlStatement.append(id); 

else 

sqlStatement.append(""); 

ResultSet results =statement.executeQuery(sqlStatement.toString());  

} 

} 

 

The Above algorithm includes these steps such as lexical analysis of sourcecodes, parsing of source codes, constructing 

abstract syntaxtree of source code, defining rules, abstract syntax tree traversal,etc. Finally, Use experiments to evaluate the 

performance ofthe algorithm. Test results show the proposed algorithmperforms perfectly. Nevertheless, because of various 

means of 

SQL in jection attack and technological updating of SQLinjection attack, hence language rules must be studied furtherso as to 

greatly raise recognition rate and reduce misstatementrate. 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

 
@IJAERD-2015, All rights Reserved                                                                    157 

 
 

IV. PREVENTION 

 

To focused on providing clear, simple, act ionable guidance for preventing SQL In jection flaws in your applications.  SQL 

Injection attacks are unfortunately very common, and this is due to two factors: 

1. the significant prevalence of SQL Injection vulnerabilities, and 

2. the attractiveness of the target (i.e ., the database typically contains all the interesting/critical data for your 
application). 

It‟s somewhat shameful that there are so many successful SQL In jection attacks occurring, because it is EXTREMELY 

simple to avoid SQL Injection vulnerabilities in your code.  

SQL Injection flaws are introduced when software developers create dynamic database queries that include user supplied 

input. To avoid SQL injection flaws is simple. Developers need to either: a) stop writing dynamic queries; and/or b) prevent 

user supplied input which contains malicious SQL from affect ing the logic of the executed query. 

This article provides a set of simple techniques for preventing SQL In jection vulnerabilities by avoiding these two problems.  

These techniques can be used with practically any kind of programming language with any type of database. There are ot her 

types of databases, like XML databases, which can have similar problems (e.g., XPath and XQuery injection) and these 

techniques can be used to protect them as well.  

At present, there are main two means about SQL injection attack defense, such as platfo rm level defense and code level 

defense. The common defense techniques are as follows: 

 

Primary Defenses: 

  Use of Prepared Statements (Parameterized Queries) 

  Use of Stored Procedures 

  Server filtering 

 Restrict database permission 
 Data Fitering  

Additional Defenses: 

 Also Enforce: Least Privilege 

 Also Perform: White List Input Validation 

 

Unsafe Example  

SQL in jection flaws typically look like this: 

The following (Java) example is UNSAFE, and would allow an attacker to inject code into the query that would be executed 

by the database. The unvalidated “customerName” parameter that is simply appended to the query allows an attacker to in ject 

any SQL code they want. Unfortunately, this method for accessing databases is all too common.  

 

 

 String query = "SELECT account_balance FROM user_data WHERE user_name= "  

   + request.getParameter("customerName"); 

 

try { 

 Statement statement = connection.createStatement( … );  

 ResultSet results = statement.executeQuery( query );  

 } 

 

V. PRIMARY DEFENS E 

 Use of Prepared Statements (Parameterized Queries) 

https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection


International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

 
@IJAERD-2015, All rights Reserved                                                                    158 

 
 

The use of prepared statements (aka parameterized queries) is how all developers should first be taught how to write database 

queries. They are simple to write, and easier to understand than dynamic queries. Parameterized queries force the developer 

to first define all the SQL code, and then pass in each parameter to the query later. This coding style allows the database  to 

distinguish between code and data, regardless of what user input is supplied. 

Prepared statements ensure that an attacker is not able to change the intent of a query, even if SQL commands are inserted by 

an attacker. In the safe example below, if an attacker were to enter the userID of tom' or '1'='1, the parameterized query 

would not be vulnerable and would instead look for a username which literally matched the entire string tom' o r '1'='1.  

Language specific recommendations: 

 Java EE – use PreparedStatement() with bind variables  

 .NET – use parameterized queries like Sq lCommand() or OleDbCommand() with bind variables  

 PHP – use PDO with strongly typed parameterized queries (using bindParam())  

 Hibernate - use createQuery() with bind variables (called named parameters in Hibernate) 

 SQLite - use sqlite3_prepare() to create a statement object 

In rare circumstances, prepared statements can harm performance. When confronted with this situation, it is best to either a) 

strongly validate all data or b) escape all user supplied input using an escaping routine specific to your database vendor as  

described below, rather than using a prepared statement. Another option which might solve your performance issue is to use a 

stored procedure instead. 

Safe Java Prepared Statement Example  

The following code example uses a PreparedStatement, Java's implementation of a parameterized query, to execute the same 

database query. 

String custname = request.getParameter("customerName"); // Th is should REALLY be validated too 

 // perform input validation to detect attacks 

 String query = "SELECT account_balance FROM user_data WHERE user_name=  ? "; 

 

PreparedStatementpstmt = connection.prepareStatement( query );  

pstmt.setString( 1, custname);  

 

ResultSet results = pstmt.executeQuery( ); 

 

 Use of Stored Procedures 

 

Stored procedures have the same effect as the use of prepared statements when implemented safely*. They require the 

developer to define the SQL code first, and then pass in the parameters after. The difference between prepared statements and 

stored procedures is that the SQL code for a stored procedure is defined and stored in the database itself, and then called from 

the application. Both of these techniques have the same effect iveness in preventing SQL in jection so your organization 

should choose which approach makes the most sense for you. 

 

Safe Java Stored Procedure Example  

The following code example uses a CallableStatement, Java's implementation of the stored procedure interface, to execute the 

same database query. The "sp_getAccountBalance" stored procedure would have to be predefined in the database and 

implement the same functionality as the query defined above. 

 String custname = request.getParameter("customerName"); // This should REALLY be validated 

try { 

 CallableStatementcs = connection.prepareCall("{call sp_getAccountBalance(?)}");  

 cs.setString(1, custname);  

 ResultSet results = cs.executeQuery();    

 // … result set handling  

 } catch (SQLException se) {    

 // … logging and error handling 

 } 

http://www.sqlite.org/c3ref/stmt.html


International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 
 

 
@IJAERD-2015, All rights Reserved                                                                    159 

 
 

 

 

 Server filtering: 

 It is to embed filtering modulesweb servers. Filtering modules find malicious codes andprevent web server from SQL 

injection attack, according tofiltering rules analyzing Http input request. Its advantag e lies indefending SQL in jection 

attack. 

 

 Restrict database permission:  

Database permission islimited in some application program, which may cut downvarious kinds of hackers attacking 

database. 

 

 Data filtering: 

 It is to validate user input data and filterdata by using white list as far as possible, or by using blacklist.or example, 

filtering dangerous single quote character etc. 

 

VI. ADDITIONAL DEFENS ES  

 Least Privilege: 

To min imize the potential damage of a successful SQL inject ion attack, you should minimize the privileges assigned to every 

database account in your environment. Do not assign DBA or admin type access rights to your application accounts. We 

understand that this is easy, and everything just „works‟ when you do it this way, but it is very dangerous. Start from the 

ground up to determine what access rights your application accounts require, rather than trying to figure out what access 

rights you need to take away. Make sure that accounts that only need read access are only granted read access to the tables 

they need access to. If an account only needs access to portions of a table, consider creating a view that limits access to t hat 

portion of the data and assigning the account access to the view instead, rather than the underlying table. Rarely, if ever, grant 

create or delete access to database accounts. 

If you adopt a policy where you use stored procedures everywhere, and don‟t allow application accounts to d irectly execute 

their own queries, then restrict those accounts to only be able to execute the stored procedures they need. Don‟t grant them 

any rights directly to the tables in the database. 

SQL injection is not the only threat to your database data. Attackers can simply change the parameter values from one of the 

legal values they are presented with, to a value that is unauthorized for them, but the application itself might be authorize d to 

access. As such, minimizing the privileges granted to your application will reduce the likelihood of such unauthorized access 

attempts, even when an attacker is not trying to use SQL inject ion as part of their exp loit.  

While you are at it, you should minimize the privileges of the operating system account that the DBMS runs under. Don't run 

your DBMS as root or system! Most DBMSs run out of the box with a very powerful system account. For example, MySQL 

runs as system on Windows by default! Change the DBMS's OS account to something more appropriate, with restricted 

privileges. 

 White S pace Input Validation: 

 

Input validation can be used to detect unauthorized input before it  is passed to the SQL query.  

 

VII. REFERENCES  

 

[1] Wang Tian, Wei Lihao, Zou Hong,” A Java Source-code SQL Injection Attack DetectionAlgorithm Based on Static 

Analysis ”, National Conference on Informat ion Technology and Computer Science (CITCS 2012)  

[2] William G J, Viegas H J, Orso A. A Classificat ion of SQL InjectionAttacks and  

Countermeasures[C]//Proc. of International Symposium onSecure Software Eng ineering. Arlington, USA: IEEE Press, 2006.  

[3] Su Zhendong, Wassermann G. The Essence of Command InjectionAttacks in Web  Applications[C]//Proc. of Annual 

Symposium onPrincip les of Programming Languages. Charleston, USA: [s. n.],2006.  

[4] Stuttard D, Pinto M. The Web Application Hacker‟s Hand book:Discovering and Explo iting Security Flaws [M]. Beijing: 

People'sTelecon Publishing House, 2009.  

[5] Zhang zhuo，SQL in jection attack techniques and countermeasuresanalysis [D].Shanghai Jiao tong university.2007, 50-

51 


