e-ISSN(O): 2348-4470

Scientific Journal of Impact Factor(SJIF): 3.134
p-ISSN(P): 2348-6406

International Journal of Advance Engineering and Research
Development

Volume 2,Issue 6, June -2015

Enhancement in LLF Scheduling Algorithm: E_LLF Scheduling Algorithm for
Real-Time Systems

Pooja Patel* Prem Balani?, Vishal Prajapati®

M. E. Information Technology,G H Patel College of Engg. & Tech.,Vallabh Vidyanagar, Gujarat, India.
23 Assistant Professor,Department of IT,G H Patel College of Engg. & Tech.,Vallabh Vidyanagar, Gujarat, India

Abstract - Scheduling Algorithm is used to schedule set of tasks. Basically, Two types of scheduling algorithm exist. One is
Static scheduling algorithm which assigns all priorities at design time, and it remains constant for the lifetime of a task.
Another is Dynamic Scheduling Algorithm. It assigns priority at runtime, based on execution parameters of tasks which can
change its priority during its execution. Least Laxity First (LLF) and Earlier Deadline First (EDF) are two most common
Dynamic scheduling algorithm used in Real-Time Systems. LLF algorithm schedule task which has least laxity or slack time.
LLF algorithm gives optimum result in under loaded condition. But, Performance of LLF algorithm decrease drastically in
overloaded condition.

In this paper, we have proposed Enhanced Least Laxity First (E_LLF) scheduling algorithm which works same as LLF
scheduling algorithm in under loaded condition. But, In overloaded condition algorithm deletes those jobs which have
already missed their deadline (or expected to miss its deadline) or ignore job with maximum execution time based on p riority
criteria so that other jobs have chance to complete their execution on processor.

Keywords- Scheduling Algorithm; LLF; Laxity; Slack;

I. INTRODUCTION

Real-Time Systems: A system is called real-time system, when we need quantitative expression of time (real-time) to
describe the behavior or nature of the system [5]. A real-time systemis a system where the correctness of the system behavior
depends not only on the logical results or finaloutcomes of the computations, but also on the physical time when these results
are produced [3][10].

This algorithm assigns priority based on Laxity (or Slack-Time): The smaller the Laxity (Slack-Time), higher the priority. At
any time t, the Slack (or Laxity) of a job with deadline d is equal to d-t minus the time required to comp lete the remaining
portion of job. [4]

Thus, Slack (or Laxity) Time =d-t-e(t)

The laxity is the maximum amount of time a job may be forced to wait if it was to execute on a processor and still comp letes
its execution within deadline. Thus, The laxity of a task is the maximum time the task or job can delay execution without
missing its deadline in the future.[1]

This LLF scheduling algorithm also known as Least Slack Time (LST) First Scheduling Algorithm or Minimum-Laxity -First
(MLF) Scheduling Algorith m.

LLF is a little more general than EDF because it takes into account laxity time (or Slack), which is more meaningful than
only considering deadline as in EDF for tasks of mixed computing sizes. In addition, LLF offers probably more graceful
degradations. [7] If system is preemptive and under loaded, LLF (Least Laxity First) scheduling algorithm has been proved
to be optimal algorithm for single processor system. But, limitation of any Dynamic scheduling algorithm is that its
performance decreases drastically when system becomes slightly overloaded.

@IJAERD-2015, All rights Reserved 146



International Journal of Advance Engineering and Research Development (IJAERD)
Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN: 2348-6406

Il. SYSTEM AND TASK MODEL
All tasks are periodic. Each task having Arrival Time (A), Period (P), Deadline (D), Execution Time (E) and Priority(PR).
These are five parameters we have considered in our algorithm. Here After each Period time new job will be added of same
type. Thus, Task generated at each multiple of period Pi. Static priority 0 and 1 has been given to each task. These priorities
only used in overloading condition. The task with static priority 1 is more important than task with static priority 0.

11l. PROPOSED SCHEDULING ALGORITHM : E_LLF
SCHEDULING ALGORITHM

If any task going to miss its deadline means it’s in overloading condition. It will come out of overloading condition when any
one job going to completes its execution successfully within deadline.

Algorithm/ Flow:
1. Find out Least Laxity Job (Least_Laxity Job).
2. Find out Maximum Execution Time containing job (Max_Exe_Time_Job).
3. Check for systemoverloading
Is System Overloaded?
If No, Return Least_Laxity Job for execution. If Yes, (Systemis in overloading condition.)
Check Remaining Exe_time (Least_Laxity Job) > Remaining time in Deadline?
If No, Check for other condition. If Yes,
Delete that Least_Laxity Job as that job has already missed the deadline or expected to miss its deadline.
Find out another Least_Laxity_Job for execution and return it.
Otherwise, check Is Max_Exe_Time_Job = Least_Laxity_Job? And Is priority (Least_Laxity _Job)=07?
If No, Return Least_Laxity Job for execution. If Yes,
Ignore the Max_Exe_Time_Job in scheduling.

Find out another Least_Laxity Job and return it.
IV.SWITCHING CRITERIA

Initially the proposed algorithm uses LLF algorithm considering that the system is in under loaded condition. But when one
job missed the deadline, it will be identified as overloaded condition. When system is in overloaded condition, E_LLF
scheduling Algorithm first of all find out job with least laxity and job with maximum execution time. After that If least laxity
job has already missed the deadline or their expected remaining execution time is more than the remaining time in meeting
deadline then that job will be discarded and another least laxity job will be in execution. Otherwise (that least laxity job is not
expected to missed its deadline then) check least laxity job and maximum execution time containing job are same or not. If
they are same, then check for priority of that least laxity job. If it is O then ignore that maximum laxity containing job in
scheduling and execute another job with least laxity time so that at least other jobs with less execution time have chance to
complete their execution. If static priority is 1 then that task is important and we can’t ignore it in the scheduling.

Thus, In this case, previously found least laxity job will be in execution.

After one job has completed its execution successfully, again the algorithm will act like LLF algorithm considering that
overloaded condition has been disappeared and now systemis in under loaded condition.

@IJAERD-2015, All rights Reserved 147



International Journal of Advance Engineering and Research Development (IJAERD)
Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN: 2348-6406

During under loaded condition, LLF algorithm is used for getting optimum result and during overloaded condition algorithm
discard that job which has no chances to meet its deadline or ignore maximum execution time job in scheduling based on
some static priority 0 and 1 so that at least other jobs have chance to complete their execution successfully. Thus, It is used
for achieving better performance.

V. SIMULATION
Performance Measures:
Load (L) of the systemwith periodic tasks can be determined using following equation.[2]
m
z : Ei
L= —
Qi
i=1
Where,
m = Number of tasks
E = Execution time required by the task P = Period of the task
D = Deadline of the task Q =P if P>=D
Q=DifP<D
The system is identified to be overloaded when the tasks offered to the scheduler cannot be feasibly scheduled even by a
clairvoyant scheduler. For periodic tasks, according to above equation, the system can be considered as overloaded system
when its load value is greater than 1.00. An appropriate way to measure the performance of a dynamic scheduling algorithm
during an overloaded condition is by the amount of work the scheduler can feasibly schedule according to the algorithm and

tasks complete their execution successfully within time limit. Therefore, Success Ratio (SR) and Effective Processor
Utilization (EPU) are main performance measures and they defined as:

In real-time systems, deadline meeting is the most important. Therefore, the most appropriate performance metric is the
Success Ratio and it defined as [1][2][3][6][8]1[9],

Number of jobs successfully Completed
within Deadline
Total number of jobs arrived

SR =

Effective Processor Utilization (EPU) gives information about how efficiently the processor is used and it is defined
as[1][2][6][8][C],

Vi
EPU = —
a T
ieR
Where,
Vi is value of a job and,
Value of a job = Execution time of a job, if the job completes within its deadline.
Value of a job = 0, if the job fails to meet the deadline.
R is set of all the jobs which are executed by the CPU.
T is total time of scheduling.

VI. FINAL RESULTS
@IJAERD-2015, All rights Reserved 148



International Journal of Advance Engineering and Research Development (IJAERD)
Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN: 2348-6406

SR and EPU have been calculated for different Load value from 0.50 to 3.00. We have given total 18 files as input which
have tasks with different Load value. Each input file containing total 200 Task Sets. Performance of both Least Laxity First
(LLF) scheduling algorithm and Enhanced Least Laxity First (E_LLF) scheduling algorithm measured in same the
environment and with help of same task set.

Results of LLF and E_LLF scheduling algorithmare as shown below :

LLF Scheduling Algorithm :

Load SR PUT
0.5 100 50.95
0.6 100 60.93
0.7 100 70.84
0.75 100 75.64
0.8 100 80.57
0.85 100 85.46
0.9 100 90.37
0.95 100 95.29
1 100 99.78
1.01 99.84 99.57
1.02 89.63 84.56
1.03 73.89 68.05
1.04 55.96 495
1.05 4752 41.93
1.1 23.89 20.4
15 5.57 3.78
2 3.59 1.9

3 1.74 0.81

E_LLF Scheduling Algorithm :

Load SR PUT
0.5 100 50.95
0.6 100 60.93
0.7 100 70.84
0.75 100 75.64
0.8 100 80.57
0.85 100 85.46
0.9 100 90.37
0.95 100 95.29
1 100 99.78
1.01 99.85 99.62
1.02 97.01 93.44

@IJAERD-2015, All rights Reserved 149



International Journal of Advance Engineering and Research Development (IJAERD)
Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN: 2348-6406

1.03 94.4 90.23
1.04 90.53 84.62
1.05 88.05 81.43
11 80.54 71.05
15 54.22 47.65
2 40.79 38.43
3 20.8 24.77

VIl. RESULT COMPARISON

Figure 1 shows Load Vs. %Success Ratio (SR) comparison of LLF and E_LLF scheduling algorithms. Figure 2 shows Load
V5. %Through Put (PUT) comparison of LLF and E_LLF scheduling algorithms.

g

8

Success Ratlo
8

\
™~
\

N
=]

1

Q

-

0.5
06
07

0.75
08 |

0.85
09

0.95

1.01

1.02

1.03

1.04 |

1.08
11
15

Load

—4—LLF —8—E_LLF

Figure 1: Load Vs. % Success Ratio (SR)

120

100

Through Put
5 8

=—=LLF —#—E_LLF

Figure 2: Load Vs. % Through Put (PUT)
ACKNOWLEDGEMENT

We would like to thank Dr. Apurva Shah at MS University for helping in simulation of scheduling algorithms. We would
also like to thank IT Department of G H Patel College of Engineering and Technology.

@IJAERD-2015, All rights Reserved 150



International Journal of Advance Engineering and Research Development (IJAERD)
Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN: 2348-6406

VIII. CONCLUSION
In under loaded condition
Proposed E_LLF scheduling algorithmgives optimum result same as LLF Algorithm.
In Overloaded Condition

Proposed E_LLF scheduling algorithm deletes jobs which have already missed the deadline or expected to miss its
deadline. OR

Ignores job with maximum execution time in task set based on some static priority assigned to the task. Thus, It gives
improved performance than LLF scheduling algorith m.

REFERENCES

[1] Prajapati, V.; Shah, A.; Balani, P., "Design of new scheduling algorithm LLF_DM and its comparison with existing EDF,
LLF, and DM algorithms for periodic tasks” Intelligent Systems and Signal Processing (ISSP), 2013 International
Conference, 1-2 March 2013, pp.42-46.

[2] A M Shah, Ph. D. Thesis, “Dynamic Scheduling for Real-Time Operating Systems”, Information Technology
Department, Sardar Patel University, India, 2010.

[3] Thakor, D.; Shah, A., "D_EDF: An efficient scheduling algorithm for real-time multiprocessor system,” Information and
Communication Technologies (WICT), 2011 World Congress on , vol., no., pp.1044,1049, 11-14 Dec. 2011

[4] Real-Time Systems by Jane W. S. Liu (Pearson Publication).
[5] Real-Time Systems Theory and Practices by Rajib Mall.

[6] Prem Sindhi &Ravindra K. Gupta, “Enhancement in LLF Real-Time dynamic scheduling algorithm using conventional
RM algorithm”, International Journal of Computer Applications (0975 — 8887), Volume 31- No.6, October 2011,pp. 6-10.

[7] Guangyi Chen; WenfangXie, "On a laxity-based real-time scheduling policy for fixed-priority tasks and its non-utilization
bound," Information Science and Technology (ICIST), 2011 International Conference, 26-28 March 2011, pp.7-10.

[8] Prem Sindhi, Mr. Ravindra K. Gupta, “Performance comparison of real-time scheduling”, International Journal on
Science and Technology (IJSAT) Volume Il, Special Issue I, 2011, pp205-211, 2011.

[9] Apurva Shah, KetanKotecha, “Efficient Scheduling Algorithms for Real-Time Distributed Systems” Ist International
Conference on Parallel, Distributed and Grid Computing (PDGC - 2010), 2010, pp. 44-48.

[10] J. Stankovic, “Misconceptions about Real-Time Computing”, TEEE Computer, 21, October 1988.

@IJAERD-2015, All rights Reserved 151



