
 International Journal of Advance Engineering and Research
Development

Volume 2,Issue 6, June -2015

@IJAERD-2015, All rights Reserved 248

Scientific Journal of Impact Factor(SJIF): 3.134
e-ISSN(O): 2348-4470

p-ISSN(P): 2348-6406

An Improved LLF_DM Scheduling Algorithm for Periodic Tasks

by Reducing Context Switches

Mitul Patel
1
, Bhavesh Oza

2

1
Computer Engineering Department, L.D. College of Engineering

2
Computer Engineering Department, L.D. College of Engineering

Abstract —To achieve successful completion of a job before its deadline is the most challenging part of scheduling in

real time systems. There are two types of priority scheduling algorithms which are commonly used in real time system.

One is fixed priority scheduling algorithms and the other is dynamic priority scheduling algorithms.Dynamic priority

scheduling algorithm LLFachieves optimum result in under-loaded condition but performs poor in over-loaded condition

of the system. Whereas fixed priority algorithm DM performs well in over-loaded condition but gives poor result in

under-loaded condition of the system. The LLF_DM achieves optimum performance in under-loaded as well as in over-

loaded condition but result in more number of context switches. Our proposed Improved LLF_DM algorithm reduces the

number of context switches.

Keywords- LLF, DM, ILLF, Scheduling Algorithm, Context Switch, Real Time Operating System

I. INTRODUCTION

Today is the era of the computer science and technology. Embedded components are highly inte grated in the

day to day life used systems. Embedded components are one kind of real time systems. Real time systems have a wide

area of the application like automation industry, E-commerce, medical applications, telecommunication, manufacturing

etc. So Real-Time systems cover a large part of computer industry.

There are mainly two types of real-time operating systems. First is hard and the second one is soft.All jobs must

be executed within their deadlines in the hard real-time systems. Missing the deadlines of a job or some jobs may cause a

failure of the system. So they are strict in the nature. Power plant controller and avionic devices etc. are the popular

examples of this type.A hard real-t ime system guarantees that absolute deadlines must be met. e.g . if in a nuclear p lant

some fault occurs, then we must take certain actions quickly otherwise it may become a dangerous situation. On the

other side, missing the deadlines of a job or some jobs is allowed up to certain level in the soft real-time system and it

causes degradation in the performance of the system. Sothey are less strict in the nature. Multimedia application and

cellphones etc. are examples of this type.It is tolerable but undesirable that a job miss the deadline e.g. in multimedia data

from CD drive should be read and converted into music in fixed period of time, but occasionally missing deadline cannot

be considered as intolerable.

II. THE S CHEDULING ALGORITHMS

2.1. The DM Scheduling Algorithm

The deadline monotonic scheduling algorithm is a static task priority algorithm [1]. It is also preemptive in

nature. DM gives the higher priority to the task with the smaller deadline. If more than one tasks have the same deadline,

then the processor is randomly assigned to one of them by the DM algorithm [9].DM becomes equivalent to the RM

algorithm when the deadlines of tasks are equal to their period [10]. Scheduling in DM algorithm referred is shown in

Figure 1 for three processes P0(2,8), P1(6,12) and P2(3,12) in a task system.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2015, All rights Reserved 249

Figure 1. DM scheduling

2.2. The LLF Scheduling Algorithm

The least laxity first algorithm is a dynamic preemptive scheduling algorithm [1]. The name g ives the idea for

the priority assignment of the task that the highest priority is assigned to the task having the smal lest laxity. The laxity l

is defined at time t with the deadline interval d and remaining execution t ime c.

𝑙 = 𝑑 − 𝑡 − 𝑐

The LLF is an optimal algorithm for the single processor systems [5] [8]. The disadvantage of the LLF

algorithm is the more number of context switches. The LLF requires the exact execution time of the task which is

difficult to know before the completion of task. This is also a disadvantage of this algorithm.Scheduling in Least Laxity

First (LLF) algorithm referred is shown in Figure 2 for three processes P0(2,8), P1(6,12) and P2(3,12) of a task system.

Figure 2. LLF scheduling

2.3. The ILLF Scheduling Algorithm

Scheduling algorithms play an important role in design of real time systems.Least Laxity First (LLF) is a well-

known and extensively applied dynamic Scheduling algorithm which has been proved to be optimal onuniprocessor

systems. The Least-Laxity-First (LLF) Scheduling algorithm assigns priority based on the slackt ime of a

process.Thealgorithm is impractical to implement because laxity tie results in the frequent context switches among the

tasks [5].

 The Improved Least Laxity First Scheduling Algorithm with intelligence time slice finds the timequantum by

taking the greatest common divisor(GCD) of all the execution time of the processes. After everyunit of time slice the

laxity of each remaining process(present in the ready queue) is calculate. The loop iscontinued until all the process es are

being executed by the processor. Here as the GCD of execution the executiontime is always greater than equal to 1 so

loop will be continue for lesser no of time or same no of time .i.e . whenthe GCD of the execution time is greater than 1 in

that case scheduling algorithm will show betterperformance(loop will continue less no of times). The ILLF algorithm

shows less context switching ascompared to MLLF scheduling Algorithm [3].

2.4. The LLF_DM Scheduling Algorithm

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2015, All rights Reserved 250

 The LLF algorithm is performing well in the under loaded system. It is not able to achieve good performance in

over loaded situation, whereas the DM acts vice a versa. That means achieve good result in the over loaded situation of

the system and average performance in under loaded system.

 The LLF_DM is mixture of the two algorithms: LLF and DM. The LLF_DM acts as the LLF in system having a

low load and as the DM in system having a high load in the system [6]. This way it takes the advantage of both

algorithms. It performs better in both the situation of system.

2.5. The Improved LLF_DM Scheduling Algorithm

 As we have seen in the LLF_DM algorithm perform equally to the LLF in the under loaded state of the system

and perform better than LLF in over loaded state. They consider only two parameters fo r performance comparison: SR

and EPU. They do not count the number of context switches. We consider one more parameter NCS (Number of Context

Switches) for performance comparison.

 The ILLF algorithm produces the less NCSs than the MLLF and the LLF. The ILLF considers GCD of

execution times of all processes in the system as an intelligent time slice for calculat ing laxit ies of ready tasks.Our

proposed Improved LLF_DM algorithm switches to the ILLF instead of LLF in under-loaded condition for reducing the

number of context switches. The Improved LLF_DM works same as the LLF_DM algorithm in t he over-loaded

condition.

III. SYSTEM AND TAS K MODEL

We call each unit of work that is scheduled and executed by the system as a job and set of related jobs, which

jointly provides some system function is a task [11]. All tasks are assumed to be periodic. The system knows about the

deadline and required computation time of the task when the task is released.

There are no precedence constraints on the task; they can run in any order relative to each other as long as the ir

deadlines are met. A task is ready to execute as it arrives in the system. We consider that the system is not having

resource contention problem. The task set is assumed to be preemptive. Preemption and scheduling incur no overhead.

IV. SIMULATION METHOD

We have implemented the LLF, the LLF_DM and the improved LLF_DM algorithms in the same environment

and have run simulations to accumulate empirical data.Periodic tasks have been considered for taking results. For

periodic tasks, load of the system can be defined as summat ion of ratio o f executable t ime and period of each task [6].

We have generated 50 task sets for 20 load values from 0.5 to 2.0. Each task set is having 3 periodic tasks. Each task set

is simulated for 500 clock cycles.

The system is said to be overloaded when the tasks offered to the scheduler cannot be feasibly scheduled even

by a clairvoyant scheduler A reasonable way to measure the performance of a scheduling algorithm during an overload is

by the amount of work the scheduler can feasibly schedule according to the algorithm [2].We consider three different

parameters to compare the performance of required scheduling algorithms.

4.1. Success Ratio (SR)

 To achieve the deadline is very important for a job in RTS. The number of jobs achieving their deadline to the

total number of jobs in the system is called SR (Success Ratio): [6] [7]

𝑆𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

Total number of jobs arrived

4.2. Effective Processor Utilization (EPU)

 It gives informat ion about how efficiently the processor is used and it is defined as: [4] [6]

𝐸𝑃𝑈 =
𝑉𝑖

𝑇
𝑖∈𝑅

Where V is value of a job is equal to computation time of job if it achieves the deadline otherwise zero. R is set

of successfully executed jobs. T is the total time for the scheduling.

4.3. Number of Context S witches (NCS)

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2015, All rights Reserved 251

 This parameter gives the number of context switches for the scheduling algorithm.

V. FINAL RES ULT

We have taken results for LLF, LLF_DM and improved LLF_DM (ILLF_DM) algorithms for different load

conditions. Load of task sets ranges from 0.5 to 2.0. Table 1 shows results in terms of SR, EPU and NCS for every

algorithm in different load conditions.

Table 1. Load vs. SR, EPU, NCS for LLF, LLF_DM and ILLF_DM

 SR in % EPU in % NCS

Load LLF LLF_DM ILLF_DM LLF LLF_DM ILLF_DM LLF LLF_DM ILLF_DM

0.5 100 100 100 50 50 50 181 194 194

0.6 100 100 95.4 60 60 57.1 197 242 204

0.7 100 100 99.2 70 70 69.5 226 254 246

0.8 100 100 97 79.9 79.9 77.5 240 256 243

0.85 100 100 97.5 84.9 84.9 82.7 258 286 279

0.9 100 100 94.9 89.9 89.9 85 292 317 299

0.95 100 100 99.6 94.8 94.8 94.4 314 341 323

1 100 100 99.1 99.7 99.7 98.9 285 348 308

1.05 16.7 83.7 83.5 16 73.6 73.4 254 302 299

1.1 8.7 81.4 80.9 8.7 73.4 72.8 239 278 270

1.15 5.4 83.7 83.6 5.5 76.7 76.6 223 246 239

1.2 4.6 70.1 69.9 4.6 57.8 57.5 262 286 282

1.3 3.2 74.5 74.1 3.2 63.5 62.9 245 279 275

1.4 2.3 70.5 69.6 2.1 59.3 58.34 258 289 283

1.5 1.9 72 71.9 1.6 56.5 56.4 279 337 333

1.6 1.3 65.5 65.5 1.3 53.8 53.8 249 249 246

1.7 1.2 50.2 49.5 1.2 43.7 43 226 191 186

1.8 1.2 62.8 62.6 1.1 52.5 52.2 262 266 262

1.9 1 61.1 61.1 0.8 49.9 49.9 255 251 247

2 0.8 47.9 47.2 0.8 38.1 37.4 240 190 184

Figure 3 shows comparison of the results of Success Ratio (SR) for LLF, LLF_DM and ILLF_DM. The results

are taken from under loaded condition (load value=0.50) to over loaded condition (load value=2.0).

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2015, All rights Reserved 252

Figure 3. Load vs. SR in % for LLF, LLF_DM and ILLF_DM

Figure 4 (on next page) shows comparison of the results of Effective Processor Utilizat ion (EPU) for LLF,

LLF_DM and ILLF_DM. The results are taken from under loaded condition (load value=0.50) to over loaded condition

(load value=2.0).

Figure 4. Load vs. EPU in % for LLF, LLF_DM and ILLF_DM

0

20

40

60

80

100

120

0
.5

0
.6

0
.7

0
.8

0
.8

5

0
.9

0
.9

5 1

1
.0

5

1
.1

1
.1

5

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9 2

Su
cc

e
ss

 R
at

io
 i

n
 %

Load

LLF

LLF_DM

ILLF_DM

0

20

40

60

80

100

120

0
.5

0
.6

0
.7

0
.8

0
.8

5

0
.9

0
.9

5 1

1
.0

5

1
.1

1
.1

5

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9 2

EP
U

 in
 %

Load

LLF

LLF_DM

ILLF_DM

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2015, All rights Reserved 253

Figure 5 shows comparison of the results of Number of Context Switches (NCS) fo r LLF, LLF_DM and

ILLF_DM. The results are taken from under loaded condition (load value=0.50) to over loaded condition (load

value=2.0).

Figure 5. Load vs. NCS for LLF, LLF_DM and ILLF_DM

VI. CONCLUS ION

The LLF algorithm achieves optimum results in under-loaded condition but fail to achieve the same in over-

loaded condition. The LLF_DM performs better than dynamic priority scheduling algorithm LLF in the context of

Success Ratio and Effect ive Processor Utilizat ion But gives more number of context switches than the LLF algorithm.

The ILLF_DM algorithm is a variant of the LLF_DM algorithm with Greatest Common Divisor (GCD) as

intelligent time slice for determining laxit ies of ready tasks. The LLF_DM performs approximately equally to the LLF in

the context of Success Ratio and Effective Processor Utilization as shown in Figure 3 and Figure 4. The ILLF_DM

algorithm reduces number of context switches than the LLF_DM algorithm in under loaded condition as shown in Figure

5. The LLF_DM and the ILLF_DM give approximately equally number of context switches in over loaded condition as

shown in figure 5.

REFERENCES

[1] Jane W.S. Liu, Real-Time Systems, Pearson Education, India, 2013.

[2] A M Shah, Dynamic Scheduling for Real-Time Operating Systems, Ph. D. Thesis, Informat ion

TechnologyDepartment, Sardar Patel University, India,2010

[3] H. S. Behera, SatyajitKhuntia, SoumyashreeNayak, “An improved least -laxity-first scheduling algorithm for

real-t ime tasks”, International Journal o f Engineering Science and Technology (IJEST), Vol. 4, No. 4, April

2012, pp.1312-1319.

[4] Ketan Kotecha, Apurva Shah, “Efficient Dynamic Scheduling Algorithms for Real-Time Multiprocessor

Systems”, International conference on High Performance Computing, Networking and Communication System-

2008

[5] Sung-Heun Oh Seung-Min Yang, “A Modified Least-Laxity -First scheduling algorithm for real-time tasks,”

IEEE International conference on real time Computing systems and application, Oct 1998.

0

50

100

150

200

250

300

350

400
0

.5

0
.6

0
.7

0
.8

0
.8

5

0
.9

0
.9

5 1

1
.0

5

1
.1

1
.1

5

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9 2

N
C

S

Load

LLF

LLF_DM

ILLF_DM

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 6, June -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2015, All rights Reserved 254

[6] V.Prajapati, A.Shah, P.Balani, “Design of new scheduling algorithm LLF_DM and its comparison with Existing

EDF, LLF, and DM algorithms for periodic tasks”, International Conference on Intelligent Systems and Signal

Processing (ISSP)-2013.

[7] Ramamritham K., Stankovik J. A., Shiah P. F. ,”Efficient Scheduling Algorithms for Real-Time Multiprocessor

Systems, IEEE Transaction on Parallel and Distributed Systems”, Vol 1(2), pp. 184-194, 1990.

[8] A.K. Mok, “Fundamental Design Problems of Distributed Systems for the Hard -Real-Time Environment,”

Ph.D. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology ,Cambridge, Massachusetts, May 1983.

[9] Albert M. K., Real-Time Systems Scheduling, Analysis, and Verificat ion, CHENG, University of Houston

[10] Nasro Min-Allah, Hameed Hussain, Samee Ullah Khan and Albert Y. Zomaya, “Power efficient rate monotonic

scheduling for multi-core Systems,” Journal of Parallel Distributed Computing, vol. 72, issue 1, January 2012.

[11] Liu C. L., Lay land L., “Scheduling algorithms for multip rogramming in a hard -realtime environment”, Journal

of ACM, Vol 20(1), pp. 46-61, 1973

