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Abstract — Logic gates like AND, OR, XOR are example of irreversible gates for which no input is calculated from each 

output. But in case of reversible gates like NOT, CNOT, HADAMARD, TOFFOLI, V, V+, etc. each input is calculated  

from each output, because no energy(information) loss is the best feature of reversible gates. And hence more 

researchers focus on reversible circuits, which are used in quantum circuits or networks. Quantum computing is a 

process that incorporates interacting physical systems that represent quantum bits and quantum gates. We present the 

quantum bit(qubit), the quantum register and the quantum gates. The qubit is described as a vector in a two  dimensional 

Hilbert space and the quantum register, which comprises a number of qubits, as a vector in a multidimensional Hilbert 

space. Any gates transform the input bits to the output bits in some deterministic fashion according to the definition of 

the logic gate. Quantum gates are Hilbert space operators that rota te the qubit or the quantum register vectors. We 

present the currently used two optimization methods one is template based and second is window based for reversible 

and quantum circuits. Finally, we have implemented our method using the benefits of above two. Quantum circuit 

optimization is useful to reduce the quantum cost for those circuits, where optimization is  applicable. Response time is 

reduced for complex computations. 
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I. INTRODUCTION 

"In about ten years or so, we will see the collapse of Moore’s Law. In fact, already, we see a slowing down of 

Moore’s Law," said by world-renowned physicist, Michio Kaku. He also said: "Computer power simply cannot maintain  

its rapid exponential rise using standard silicon technology, this law’s collapse due to heat and leakage  issues." He 

represented possible alternatives to the demise of Moore’s Law: protein  computers, DNA computers, optical computers, 

quantum computers and molecular computers.[15] 

"Quantum computers can efficiently render every physically possible quantum environment, even when vast 

numbers of universes are interacting. Quantum computation is a qualitatively new way of harnessing nature," according 

to David Deutch, an Israeli-British physicist at the University of Oxford who pioneered the field of quantum computation 

and is a proponent of the many-worlds interpretation of quantum mechanics. Quantum computers, says Deutch, have the 

potential to solve problems that would take a classical computer longer than the age of the universe. 

Quantum technologies offer new dimensions in field of computation and also in field  of communication. Quantum 

technology and classical silicon technology are very different than each other. In case of Quantum computers, they have 

quantum bits (qubits) to store informat ion. The behaviour of each qubit is governed by the laws of quantum mechanics, 

enabling qubits to be in a “superposition” state, that is, both a 0 and a 1 at the same time, until an outside event causes it 

to “collapse” into either a 0 or a 1. 

In quantum computing to perform each operation special quantum circuits are designed. Now to get better 

performance like good throughput, fast response, etc… we can redesign these circuits. This redesign is done 

by either rearrangement and/or removal of unnecessary quantum gates. We can refer this redesigning process as an 

optimization process. As per our study, currently two optimization methods are available for quantum c ircuits. Among 

them first is template matching, second is window based optimization. Each has their own special technique or algorithm 

for optimization. Each does good job also. 

Finally, we aimed to find out the best optimal approach/algorithm using the subparts of available optimizing 

techniques. We can apply this algorithm on any quantum combinational circuit  having 3 qubits.  

 

II. QUANTUM GATES  

Each quantum gate has its own matrix representation. For a given circuit, we perform tensor product between the 

gates and this tensor product is nothing but it’s a matrix multip licat ion. Consider an example of 5 gates. So we have 5 

different matrices. Number of matrix multiplication are performed between these gates. A final output represents original 

circuit. Qubits are applied to this final matrix rather than applying them to indiv idual member gates of circu it.  
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2.1 NOT GATE 
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Figure 1. Not Gate  

 

2.2 Z GATE 
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Figure 2. Z Gate 

 

2.3 V GATE 

Matrix Representation Symbol 
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Figure 3. V Gate  

 

2.4 V+ GATE 
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Figure 4. V+ Gate 

 

2.5 HADAMARD GATE 

Matrix Representation Symbol 
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Figure 5. Hadamard Gate 

 

2.6 Controlled SWAP GATE(For 3 Qubit) 
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Figure 6. CSWAP Gate 

 

2.7 Controlled NOT GATE 

Matrix Representation Symbol 
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Figure 7. CNOT Gate 
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2.8 Controlled Z GATE 
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Figure 8. CZ Gate  

 

2.9 Controlled V GATE 
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Figure 9. CV Gate  

 

2.10 Controlled V+ GATE 
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Figure 10. CV+ Gate 

 

III. GATE PROPERTIES  

3.1 For some gates, when we place two same gates in adjacent, their combination gives identity matrix. Like Hadamard  

gate, Not gate, Z gate, Swap gate. 

 

3.2 For some gates, when we place two same gates in adjacent, their combination gives some third gate's  matrix. Like V 

gate, V+ gate. 

V x V = NOT 

V
+
 x V

+
 = NOT 

 

3.3 For some gates, when we place two different gates in adjacent, their combination gives some third gate’s  matrix. 

Like, V and V+ gates give identity matrix in output. 

V x V+ = Identity 

V and NOT gates give identity matrix in output. 

V x NOT = V+ 

V+ and NOT gates give identity matrix in output. 

V+ x NOT = V 

 

IV. TEMPLATES  

Templates are such circuits, which generates identity matrix. So, whenever we find any template in circu it then we 

can remove it completely. Fo llowing table provides list of templates. 
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Figure 11. Template1 

 
Figure 12. Template2 

 
Figure 13. Template3 

 
Figure 14. Template4 

 
Figure 15. Template5 

 
Figure 16. Template6 

 
Figure 17. Template7 

 
4.1 Moving Rule  

Each circuit may not contain template, as it is. But it may possible after apply ing few  rearrangements of gates, we 

can find out presence of one or more templates in rearranged circuit. For Rearrangement, we have to follow moving ru le. 

Assuming gate A has control set CA (CA is an empty set in the case of an uncontrolled gate) and target TA and gate B has 

control set CB and target TB, these two gates form a  moving rule if, and only if, TA NOT ⊆ CB and TB NOT ⊆  CA. 

 

 
Figure 18. Before moving rule  

 
Figure 19. After moving rule  
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Using moving rule, we can perform rearrangement of gate with in circuit.  

 

V. ALGORITHM 

We have developed an algorithm which utilizes the moving rule to rearrange gates. Next , gate properties and temples 

are used to remove the unnecessary gates from the circuit.  Before looking at algorithm, we visit first matrix generation 

algorithm for individual gate of circuit.  
5.1 Matrix Generation Algorithm 

INPUT: BASE_MATRIX for particu lar gate, OUTPUT_MATRIX with each element 0 

OUTPUT: OUTPUT_MATRIX with elements mapped from BASE_MATRIX  

ALGORITHM_BEGIN  

Total_No = total number o f lines in circu it 

Target_Line = line number where gate is positioned 

Difference = Total_No – Target_Line  

Total_repeatition = 1 << (Target_Line – 1) 

Gap = 1 << Difference  

FOR m = 0 to Total_repeatition increment m by 1 

MULTIPLIER = 1 << (Difference + 1) 

MULTIPLIER = MULTIPLIER * m 

FOR k = 0 to Gap increment k by 1 

INDEX = MULTIPLIER + k 

 FOR i = 0 to 2 increment i by 1 

  FOR j = 0 to 2 increment j by 1 

   IF i = 0 AND j = 0 

    OUTPUT_MATRIX (INDEX, INDEX) = BASE_MATRIX(0,0)  

   IF i = 0 AND j = 1 

    OUTPUT_MATRIX (INDEX, INDEX + Gap) =BASE_MATRIX(0,1)  

   IF i = 1 AND j = 0 

    OUTPUT_MATRIX (INDEX + Gap, INDEX) =BASE_MATRIX(1,0) 

   IF i = 1 AND j = 1 

    OUTPUT_MATRIX (INDEX + Gap, INDEX + Gap)  =   

BASE_MATRIX(1,1) 

  END FOR 

 END FOR 

END FOR 

END FOR 

END 

 
 
 

 
 

 
 
 

 
 

5.2 Optimization Algorithm 

INPUT: Circu it 

OUTPUT: Optimized Circu it 

ALGORITHM_BEGIN 

Step 1: Calcu late quantum cost of input circuit. 

Step 2: Get equivalent matrix form for each gate. 

Step 3: Check and Apply moving rule till it  applicable in circu it.  

Step 4: Check and Apply gate-inverse rule till it applicable in circuit.  

Step 5: For each template 

  IF template is found in circuit THEN 

   Remove particu lar template from circuit  

Step 6: Calcu late Quantum Cost 
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END 

 
5.3 Flow Chart of Optimization Algorithm  

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

5.4 Experiment and Result 

We have implemented our algorithm in java.  

Algorithm has complexity of O(Total_line
4
). 

We have tested our algorithm on 10 sample circuits. Among them, here we are presenting two of them with results.  
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5.4.1 Circuit 1  

 
Figure 20. Circuit before optimization 

 
Figure 21. Circuit after optimization 

5.4.2 Circuit 2 (3_17_15, Benchmark) 

 
Figure 22. Circuit before optimization 

 
Figure 23. Circuit after optimization 

CONCLUS ION 

As we know, optimizat ion means try to do some better than the current. By providing greater computing capabilit ies, 

quantum computer will provide strong platform to solve those problems, which are unsolved till today. Quantum 

computing will create new scope for researchers and also for developers. And might be chance, we or next generation 

will see new look of this world. But the negative side of quantum computing is “when will quantum computers available 

for normal users at economic cost?” 
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Using presented optimization method, we can optimize quantum circu its up to 3 qubits. We can get good optimized 

outcomes. Hence we can reduce the quantum cost(QC) of circu it if possible. Due to the reduction in quantum cost, 

response time of circuits will be decreased. As soon as new templates will be invented, we can reduce quantum cost by 

more numbers. 
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