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Abstract — In recent years due to the acceleration in IoT (Internet-of-Things) and M2M (Machine-to-Machine) 

communications streams are everywhere. Twitter streams, log streams, TCP streams click streams and event streams are 

some good examples. Big data streaming applications need to process and  analyze information in real-time. The 

Map/Reduce model and its open source implementation Hadoop designed as a high fault-tolerant system for batch 

processing and high throughput jobs. However, the Map/Reduce framework is not suitable real -time streaming 

applications that require very low latency of response. Owing to the high demand for processing non -batch jobs such as 

real-time and streaming jobs several big data frameworks have been developed or under developing. This paper presents 

a survey of open source frameworks that support big data stream processing. 
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I. INTRODUCTION 

With the acceleration in IoT (Internet-of-Things) and M2M (Machine-to-Machine) communications there is a class of 

emerging stream data applications such as telemat ics, sensor- based monitoring, network monitoring, fraud detection, 

traffic estimat ion, stock trading  and so on where tremendous volume of data generated with velocity in external 

environments are pushed to servers for real-time processing. The data generated by these applications can be viewed as 

an unbounded sequence of events  where most of the data is valuable at its time of arrival. For example, Credit  card fraud 

analytics or sensor-based network fault pred iction to predict if a g iven transaction is a fraud or if the network is 

developing a fault need to process real-time data stream on the fly at  its arrival. If decisions such as these are not taken in 

real-t ime, the chance to alleviate the damage is lost. Big data streaming applications have a  high volume, h igh velocity 

and complex data types. However, the standard MapReduce model and its implementations like Hadoop, is completely 

focused on batch processing and handle only the volume and variety of the data but not the velocity part of it. That is, all 

input data must be completely available in the input store before any computation is started and the output results are 

available only when the entire computation is done. In contrast to these batch properties, for stream applicat ions input 

data is not available completely in the beginning and arrives constantly. Also, the input data must be processed without 

being totally stored. These new demands for large-scale stream processing require systems that are more elaborate, ag ile 

and sophisticated than the recently available Map/Reduce solutions like the Hadoop framework. Th is pap er surveys the 

frameworks that can handle big data stream processing [1]. 

 

II. BIG DATA STREAM PROCESS ING FRAMEWORKS 

We now introduce real-t ime Big Data frameworks that are widely designed for real-t ime stream data analytics. 

 

2.1. Storm 

Storm is an open source distributed and fault-tolerant real-time framework for processing unbounded streaming data 

developed by Twitter. It guarantees all the data will be processed and is easy to set up and operate. Storm is fast that a 

benchmark clocked it at over a million tuples processed per second per node. Therefore, it has many use cases, such as 

real-t ime analytics, interactive operation system, on-line machine learning, continuous computation, distributed RPC, and 

so on [2]. 

 

2.1.1. Storm Topology 

To implement real-t ime stream processing on Storm, users need to create different topologies  as shown in Figure 1. A 

topology is arranged as directed acyclic graph (DAG) with spouts and bolts acting as the graph vertices.  Spouts are the 

starting points in the graph, which act as source of streams. Bolts process the input streams that are piped into it and 

outputs new streams. Each node in  the topology contains processing logic and executes in parallel. The links between 

nodes indicate how the data should be processed by nodes. Spouts and bolts can be written in different programming 

languages like Python, Java or Clojure [1]. 
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Figure 1. Storm Topology 

  

2.1.2. Storm Architecture  

The high level Storm arch itecture is shown in Figure 2. A  Storm cluster consists of three sets of working nodes and they 

are Nimbus, Zookeeper and Supervisor nodes. Nimbus acts as the master node and plays the role o f JobTracker in 

Hadoop. It is responsible for distributing code across the Storm cluster, scheduling tasks to worker nodes and 

coordinating the execution of the whole system. Superv isors act as worker nodes and play the role of TaskTracker in 

Hadoop. Clients describe the topology as Thrift object and submits to Nimbus. Nimbus distributes the code to the 

workers for execution, keeps a track of the progress of the workers and handles node failures. The actual work is done by 

workers which receives instructions from Nimbus and spawns workers based on it. Each worker process runs a Java 

Virtual Machine (JVM), in which it runs one or more executors. Executors are composed of one or more tasks. The 

actual work for a spout or a bolt is done in the task. The Supervisors contact Nimbus with a periodic heartbeat protocol, 

advertising the currently running topologies and any vacancies that are available to run more topologies. Zookeeper plays 

an important role in coordinating Nimbus and Supervisor nodes. Furthermore, it records all states of Nimbus and 

Supervisors on the local disk for resilience. If Nimbus node fails, the workers  can still continue to make progress. Also, 

the Supervisors restart the workers if they fail [3]. 

 
Figure 2. Storm Architecture 

 

2.1.3. Fault Tolerance  

In Storm, Nimbus handles the node failures. The Nimbus and Supervisor daemon s are designed to be stateless and fail-

fast. The Supervisor nodes periodically send heartbeats to Nimbus. If heartb eats are not received by Nimbus timely, it 

assumes that the supervisor is no longer active. Node failure and message failure are two orthogo nal events as message 

failure can result from software bugs or intermittent network failures. Due to this handling of failed messages and 

moving workers to other nodes in the event of node failures are done in two different ways without any correlation 

between the two. This design is what makes the system more robust to failures  [3]. 
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2.2. Apache S4 

S4 (Simple Scalable Streaming System) is a general-purpose, fault-tolerant, distributed, decentralized, scalable, event-

driven, modular computing platfo rm for processing continuous unbounded streams of data. It was init ially  released by 

Yahoo in  2010 and has become an Apache project  since 2011.  The processing model is inspired by MapReduce and 

employs the Actors model for computations. Processing elements (PE’s) are written using Java programming language. 

PE’s are assembled into applications using the Spring Framework based on XML configuration  [2]. 

 

2.2.1. S4 Architecture 

S4 is a message-passing system. Figure 3 shows the S4 architecture. S4 provides Client Adapter which allows third-party 

client to send and receive events to S4 cluster. Client Stub component communicates with the clients using TCP / IP 

protocol functions. The two core components of the S4 framework are Events and Processing elements. Events are  the 

only mode of communication between the Processing Elements. The external clients act as the source of data which is 

submitted to the client adapter. Also, the external clients can receive events from S4 cluster through the adapter via the 

Communicat ion Layer. The adapter converts the incoming input data into events which are then sent to the S4 cluster [5].  

 

Processing Elements (PEs) are the basic computational units that identify the events with the help stream names. Each 

runtime instance of a PE is  uniquely identified by using its functionality as defined by class and configuration, the types 

of events consumed by the PE, the keyed attribute in those events and the value of the keyed attribute in the event it 

consumes. A new PE is instantiated for each unique value of the key attribute. .Every PE consumes data events routed 

towards it on the basis of keys and either produces one or more events to be consumed by other PE’s or publishes the 

results to an external database or consumer [4].  

 

Processing Nodes (PNs) act as the logical hosts to PEs. They are responsible for listening to incoming events, executing 

operations on the incoming events, dispatching events and generating output results. S4 init ially routes every event to 

PNs based on a hash function of the values of all known keyed attributes in that event. When the event reaches the 

appropriate PN, an event listener in the PN sends the incoming event to the processing element container (PEC) which 

invokes the appropriate PEs in the proper order  [4]. 

 

The communication layer is responsible for cluster management, mapping physical nodes to logical nodes and automatic 

failure handling. This layer uses distributed service Zookeeper to help coordinate between nodes in an S4 cluster  [5]. 

 

 
Figure 3. S4 Architecture  
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In the presence of sudden node failures, S4 automatically detects the failu re using Zookeeper and d istributes the tasks 

assigned to the failed node to other nodes. Snapshots of the state of the processing nodes are saved time to time and these 

are used to create a new instance of a Processing Node when one crashes. S4 doesn’t guarantee message delivery in case 

of node failures and uses State recovery for recovering from failures. Events sent after the last checkpoint and before the 

recovery are lost. Also, S4 uses the push model o f events in the system so events can be lost due to high load. Because of 

these two reasons State recovery is very important for long running machine learn ing programs  [4] [6]. 

 

2.3. Apache S park Streaming  

Spark Streaming is an extension of the core Spark API that enables high -throughput, in memory, scalable, fault -tolerant 

stateful stream processing of live data streams. Data can be inserted from many sources like Kafka, Flume, ZeroMQ, 

Kinesis, Akka Actor or TCP sockets and can be processed using algorithms expressed with high -level functions 

like map, reduce, join and so on. Finally, processed data can be stored to file systems like HDFS, databases and live 

dashboards [7]. 

 

2.3.1. Spark Streaming Architecture  

Spark Streaming treats each streaming job as a series of deterministic batch jobs of small t ime intervals. It prov ides an 

abstraction called Discretized St reams (D-Streams), which represents a continuous stream of data. Internally, each D-

Stream is represented by a continuous series of resilient distributed datasets (RDD’s), which is Spark’s abstraction of an 

immutable, fault-tolerant and distributed datasets. Each RDD in a D-Stream can be acted on by determin istic 

transformations and contains data from a particu lar interval. The batch processing engine Spark is used to process each 

batch of data. Spark Streaming will receive the live input data stream, div ide it  into batches of one second and store them 

in Spark’s memory as RDDs. 

 

Once the time interval completes, the dataset of the corresponding interval is processed via deterministic parallel 

operations, such as map, reduce, reduceByKey and groupBy, to produce new datasets representing either program 

outputs or intermediate state. In the former case, the results may be stored in an  external file  system or storage device. In 

the latter case, the intermediate state is stored as resilient distributed datasets (RDDs) which may then be processed along 

with the next batch of input data to produce a new dataset of updated intermediate states  [8]. 

 
Figure 4. Spark Streaming Architecture  

 

2.3.2 Fault Tolerance  

Fault tolerance is essential for stream processing. To recover from failures, both DStrea ms and RDDs track of the 

deterministic operations used to build them called the lineage graph, and reruns these operations on base data to rebuild 

lost partitions. When a node fails, it reconstructs the RDD part itions that were on it by re -running the operations that built 

them from the original input data reliably stored in the cluster [8]. 
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Apache Samza is an open source and distributed real-time computational framework for processing streaming data. It 

was initially by LinkedIn and has become an Apache incubator project since 2013. Kafka is used for messaging and  

YARN to provide fau lt tolerance, security, processor isolation, cluster management and resource management  [9]. 

 

2.4.1. Processing Model  

The basic building blocks of a Samza application are: Streams and Jobs.A stream is composed of an immutable collection 

of messages of same type or category. A stream can  be read  by any number of consumers and messages can be added to 

or deleted from a stream. Each stream is broken into one or more partitions to scale the system to handle large amount of 

data. The sequence of messages within each partition is totally ordered. 

 

A job is a code that performs a logical t ransformat ion on a set of input streams and produce output streams. In order to 

increase the throughput of the processor, each job is broken into smaller units of execution called Ta sks. A task act on 

one partition of a message stream and produce a message stream. Each task can consume data from multip le partit ions 

from different input streams. Tasks can operate independently as there is no defined ordering of messages across the 

partitions [9]. 

 

2.4.2. Samza Architecture  

Samza architecture consists of three layers: streaming layer, execution layer and processing layer. It prov ides support for 

the three layers using Apache Kafka, Apache Yarn and Samza API respectively. Kafka is used fo r the distributed 

message brokering with persistence for message streams. Yarn is used for the distributed resource allocation, scheduling 

and task coordination across machines. Samza API responsible for creating, processing stream tasks on a cluster. In 

Kafka, a stream is called a topic. A topic is partitioned using a partitioning scheme and replicated across multiple 

machines called  brokers. The part itioning of a stream is done on the basis of the key associated with  the messages in the 

stream. The messages with the same key belong to the same partition. In order to achieve distributed partitioning of 

streams, Samza uses the topic partitioning of Kafka. Kafka brokers provide the input and output for the Samza 

StreamTasks. YARN has three important blocks: a ResourceManager (RM), a NodeManager (NM), and an 

ApplicationMaster (AM). To start a new job, the Samza client talks to the RM. To allocate space on the cluster for 

Samza’s ApplicationMaster the YARN RM talks to a YARN NM. NM starts the Samza AM after space allocation. Once 

the Samza AM starts, it tells the YARN RM for one or more YARN containers to run SamzaContainers and the 

processing code runs inside these containers. The RM talks to NM and allocates space for the containers. After the space 

allocation, the NM’s start the containers.Kafka stores all the messages in the file  system and doesn’t delete them for a 

configured amount of time which allows the tasks to consume messages at arbitrary points if they need to  [10]. 

 
Figure 5. Samza Architecture 
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checkpoint and starts consuming messages from the checkpointed offsets. This guarantees at -least-once delivery and 

processing of messages. However, if a broker node fails messages persisted in the file system are lost and cannot be 

recovered [9]. 

 

III. COMPARIS ION OF STREAM PROCESSING FRAMEWORKS  

 

Table 1. Comparision of Stream Processing Frameworks [11][12] 

 

Specification Storm Spark Streaming S4 Samza 

Data Pipeline Pull based Pull based Push based Pull based 

Delivery Semantics At Least Once 

Exactly-Once with 

Trident 

Exactly Once Not guaranteed 

delivery  

At Least Once 

State Management Stateless Stateful Stateless Stateful 

Data Query ing Trident Spark SQL None None 

Latency Sub-second Seconds 

Depending on batch size  

Seconds Sub-second 

Language Support Java, Clojure, Ruby, 

Python, Javascript, 

Perl 

Scala, Java, Python Java Scala, Java 

 

IV. CONCLUS ION 

With the exponential growth in IoT and M2M communication, dealing with large amounts of streaming data is posing 

new challenges. MapReduce-based solutions like Hadoop is suitable for batch processing jobs that process large amount 

of data over a long time. This high latency response makes it unsuitable for recent demands of real-t ime stream 

processing. Hence, real-time stream processing frameworks have emerged recently which have shown the advantage in 

handling continuous data streams and provide stream data analytics. In this paper, we have made the survey of open-

source stream processing frameworks, including Storm, Spark Streaming, S4 and Samza. We have also compared the 

stream systems from the perspectives of data pipeline, delivery semantics, state management, data querying, latency and 

language support. Each framework has its drawbacks and advantages. With the increase in  streaming data, it would be of 

a great value to come up with an efficient framework for gathering, processing and analyzing big data in a near real-t ime. 
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